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Abstract

Even though the prospect of fusing images issued by different medical imagery systems is
highly contemplated, the practical instantiation of it is subject to a theoretical hurdle: the
definition of a similarity between images. Efforts in this field have proved successful for
select pairs of images; however defining a suitable similarity between images regardless
of their origin is one of the biggest challenges in deformable registration.

In this thesis, we chose to develop generic approaches that allow the comparison of any
two given modality. The recent advances in Machine Learning permitted us to provide in-
novative solutions to this very challenging problem. To tackle the problem of comparing
incommensurable data we chose to view it as a data embedding problem where one em-
beds all the data in a common space in which comparison is possible. To this end, we
explored the projection of one image space onto the image space of the other as well as
the projection of both image spaces onto a common image space in which the comparison
calculations are conducted. This was done by the study of the correspondences between
image features in a pre-aligned dataset.

In the pursuit of these goals, new methods for image regression as well as multi-modal
metric learning methods were developed. The resulting learned similarities are then incor-
porated into a discrete optimization framework that mitigates the need for a differentiable
criterion. Lastly we investigate on a new method that discards the constraint of a database
of images that are pre-aligned, only requiring data annotated (segmented) by a physician.
Experiments are conducted on two challenging medical images data-sets (Pre-Aligned
MRI images and PET/CT images) to justify the benefits of our approach.

keywords: Machine-Learning, deformable registration, multi-modal, metric-learning, 3D
Medical Image
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Résumé

Alors que la perspective de la fusion d’images médicales capturées par des systèmes
d’imageries de type différent est largement contemplée, la mise en pratique est toujours
victime d’un obstacle théorique : la définition d’une mesure de similarité entre les im-
ages. Des efforts dans le domaine ont rencontrés un certain succès pour certains types
d’images, cependant la définition d’un critère de similarité entre les images quelle que soit
leur origine et un des plus gros défis en recalage d’images déformables.

Dans cette thèse, nous avons décidé de développer une approche générique pour la
comparaison de deux types de modalités donnés. Les récentes avancées en apprentissage
statistique (Machine Learning) nous ont permis de développer des solutions innovantes
pour la résolution de ce problème complexe. Pour appréhender le problème de la com-
paraison de données incommensurables, nous avons choisi de le regarder comme un prob-
lème de plongement de données : chacun des jeux de données est plongé dans un espace
commun dans lequel les comparaisons sont possibles. A ces fins, nous avons exploré la
projection d’un espace de données image sur l’espace de données lié à la seconde image
et aussi la projection des deux espaces de données dans un troisième espace commun dans
lequel les calculs sont conduits. Ceci a été entrepris grâce à l’étude des correspondances
entre les images dans une base de données images pré-alignées.

Dans la poursuite de ces buts, de nouvelles méthodes ont été développées que ce soit
pour la régression d’images ou pour l’apprentissage de métrique multimodale. Les similar-
ités apprises résultantes sont alors incorporées dans une méthode plus globale de recalage
basée sur l’optimisation discrète qui diminue le besoin d’un critère différentiable pour la
recherche de solution. Enfin nous explorons une méthode qui permet d’éviter le besoin
d’une base de données pré-alignées en demandant seulement des données annotées (seg-
mentations) par un spécialiste. De nombreuses expériences sont conduites sur deux bases
de données complexes (Images d’IRM pré-alignées et Images TEP/Scanner) dans le but
de justifier les directions prises par nos approches.

mots clés: Apprentissage Statistique, Recalage Déformable, Multi-Modal, Apprentissage
de Métrique, Image Médicale 3D
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Chapter 1

Introduction

The intent of this work is to highlight a domain which is at crossroads between Computer
Vision, Medical Image Analysis and Machine Learning: the comparison of data issued by
different modalities. We will focus here on images but to some extent, a wider range of
data can be considered. In Computer Vision and Medical Image Analysis, the problem
of the alignment of two (or more) images has attracted a lot of attention, and is referred
to as the Registration problem in Medical Image Analysis. In order to put the images
into alignment, one has to define a criterion that will give some insight on the goodness
of fit. For this application, the criterion has to be based on the images and their spatial
position and in the very frequent case where images are issued by different modalities,
the registration model will have to deal with the comparison of data issued by different
modalities (in this work we will refer to a modality as an imaging device, such modalities
range to the very simple household camera to the very expensive MRI scanner).

In the recent years, a new interest in Machine Learning has grown for Metric Learning,
the aim of which is to learn in a data set the proximity of elements based on a user defined
or automatically defined criteria. The definition of a metric is in essence the definition of a
new space in which the data is mapped. Learning the metric allows to have a finely tuned
control on the proximity of objects considered similar by the user or by an automated
system in the new space.

The aim of this work is to benefit from the recent advances in Metric Learning towards
the creation of novel finely tuned alignment criteria, for multi-modal and deformable im-
age registration.

1.1 Background and motivations
Image alignment is a topic that has been studied a lot, in Computer Vision, the deformable
image alignment problem sees applications in stitching and mosaicing as well as optical

1
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flow to name a few, in Medical Image Analysis deformable image alignment that is referred
as the registration of medical images is an active field of research and has been for over 20
years.

1.1.1 Applications in Computer Vision

Stiching and Mosaicing: this is a very old problem of Computer Vision yet it is still
largely unsolved. The idea is to compose a larger photograph with smaller pictures by
assembling them seamlessly. The problem is twofold, first correspondences between two
sub-pictures need to be found in order to fuse them correctly, but second and foremost the
pictures there has been at least a rotation of the camera between the two pictures, which
yields a change in perspective between them, but there might also be a change in the cam-
era (changing focal is technically already a change in camera), and larger distortions can
appear. Now if some objects are moving between pictures, we are faced with a deformable
alignment problem, where we try to map two realities that are similar but of different
shapes.

Optical flow: Optical flow, refers to the problem of detecting the movement from one
frame to the next in a video. This problem is of huge interest as can be the stepping
stone to many other algorithms. Among the most famous are the video compression algo-
rithms. Detecting motion in a video allows to better compress a video by applying different
compression rates to different parts of the image according to the motion they are under.
Intuitively we don’t need to retain all non moving parts of the video for each frame, but
only keep them stored for the first frame it appears in. Optical flow is also paramount in
the complex tracking problems such as following people in crowds.

Finding motion from one frame to the other however can be a tough problem. It is
usually based on the comparison pixels by pixels: for each pixels in one image we look
for the most comparable pixels in its vicinity in the other image, the displacement of this
pixel is denoted as its flow. The problem is that the object in the image might undergo
serious deformations rendering a naive comparison approach useless. Deformable image
alignment plays an essential role in this case.

1.1.2 Registration of Medical Images

In the context of the clinical practice, Computer Vision can help the physician in various
ways. Among other things, it can be used to automate tedious tasks and allow the medical
crew to focus on the patient, it can help the diagnostic decision and give the physicians
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reliable measures, last it can assist the physician on some medical procedures. Medical
image registration is a tool used in all these tasks. Here I am going to give some use cases.

Tumor tracking: When tumors are spotted in a patient, especially when the tumor is
benign or when it is in a critical area like the brain, resection is not always the course of
action taken, and treatments like chemotherapy or radiation therapy can be considered. In
those cases the physicians need to have a close control on the progression of the tumor. To
this end the volume of the tumor is a measure that is often taken into consideration. If the
volume of the tumor decreases, the treatment is effective.‘

In order to track the progression of the tumor over time, several volumetric scans will
be taken (either CT-scan, MRI, PET-scan or other technologies depending on the kind
of tumor and the biological tissues involved). The radiologist or the surgeon will then
delineate the tumor in 3D in each image, and be able to control the volume of the tumor
directly. However , in each of the scans, the patient might not be in the exact same position,
meaning that the tumor will not be imaged at the same angle, which could lead to severe
biases in the volume estimation. Image alignment will be used here to recover in one
image the position of the patient in the other. Rotations and translations will be applied to
one image to closely match the other, this way both tumors will be visualized at the same
angle.

Worse still, tumors are often located in deformable tissues and organs, that are affected
by the breathing of the patient and their position on the table. The most common example
is the deformation incurred by the internal organs during the breathing, but gravity also
takes a real part and a slight variation in the position of the patient can lead to differ-
ently looking images even if the patient hold his breath. Evidently when the organs are
deformed, the tumors inside them are also deformed. In this case, one cannot measure re-
liably the volume of the tumor since it is directly linked to the deformation that the tumor
is subject to. Deformable registration aims at recovering the deformation in one image
such that it matches that of the other. Now we are not trying to find the rotation and the
translation aligning the images anymore but we are trying to displace every bit of tissue so
that the images are comparable, this is arguably a much harder problem. In figure 1.1, the
deformation due to the breathing in the organs, and its impact on a lung tumor is shown in
CT images.

Intra-operative tissue localization: In most cases before a surgical procedure a pre-
operative radiologic image is taken in order to help the surgical planing and to identify
sensitive tissues and organs that should not be tempered with during the dissection. Unfor-
tunately, the localization of body tissues is intricate and the tissue movements and shifts
caused by the dissection make things even harder. It is then often hard for the surgeon to
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Figure 1.1: Image Courtesy of [Onimaru 2003]. Organs deformation due to breathing and
its impact on a lung tumor delineated in the image.

locate precisely the tissues that he planed for resection and also the tissues that should not
be tempered with. It is common practice in some procedures to have a radiologist perform
a sonography during the intervention to clarify the position of some tissues. The sonog-
raphy images are often not readily interpretable by the surgeon and the presence of the
radiologist is crucial. This technique is of course subject to the bias of the interpretation of
the radiologist opinion but also doesn’t give an accurate estimation of the current position
to the surgeon. In most cases it is of course not thinkable to use a CT scanner during
the surgery to have a clearer insight. However if one such image could be produced, the
surgeon could gain more control on the operation.

This problem attracts a lot of attention in the medical image analysis community, and
implies the deformable (to account for tissue shift and dissection) registration of the intra-
operative sonography with the pre-operative radiologic image. This is an even harder
problem than the one of the tumor traking, because both images are not issued by the same
radiologic modality. We will see in details why it is theoretically a much harder problem,
but a quick look at two typical images, one of sonography and one of a MRI-scanner for
instance figure (1.2), can convince the reader that this problem is not trivial.
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Figure 1.2: Images courtesy of the Technical University of Munich. Side by side compar-
ison of an MRI image of the brain and an extra-cranial ultrasound image of the brain. The
problem of alignment is of the utmost complexity
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Chapter 2

Metric Learning for Multi-Modal Image
Registration

In this work, I will refer to Image Registration as the process which goal is to put two im-
ages in alignment. The criterion for the alignment may vary from an alignment achieved
only through a series of global translation to an alignment achieved through local transla-
tion of image parts. In any image registration process, three theoretical bricks are involved.
The first brick is the definition and modelization of the deformation field applied to one
image to match the other. The second brick is the criterion that is used to tell if two images
match. Finally, one needs an optimizer which purpose will be to find the transformation
that satisfies the matching criterion best.

In this work, I will mainly focus on the second brick which is the definition of a
matching criterion, in the case where the two images considered are issued by different
modalities. The recent advances in the field of metric learning and discrete optimization
motivated us in the definition of matching criteria based on the prior knowledge of images
that are already in alignment.

2.1 Image Registration

Let us consider two images I and J that are discrete maps mapping from Ω ⊂ Rd to R, d
is the dimension of the image space and most frequently d = {2, 3}. We will refer to I as
the static, fixed or target image and to J as the moving or source image in the registration,
as one is matched to the other. In this context image registration is the process used to find
a transformation T? belonging to the space of transformations T ⊂ {T ∈ Rd → Rd} such
that J ◦T is as close as possible to I in the sense of the criterion C ∈ {R×R→ R}. This

7
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is often achieved through the minimization of an energy functional:

T? = argmin
T∈T

C (I, γ (J ◦T)) (2.1)

Here we added γ which is the interpolation map that puts J ◦ T in the same pixel grid as
I . For the clarity of this work we will voluntarily drop it from the equations and assume it
is taken care of in the deformation process. If no restriction is done on the transformation
space T , this problem is ill-posed and the solution is not unique. This issue is accounted
for in two ways: first the transformation T is parametrized with the parameter vector θ
and the search is not carried out in the space of transformations but rather in the space
of the parameters of T, the space Θ of which θ is a member. Second, a smoothness or
regularization term R in the energy is used as a way to select between potentially many
transformation candidates.
The energy minimization is then rewritten:{

T? = Tθ?
θ? = argmin

θ∈Θ
E(θ) = argmin

θ∈Θ
C (I, J ◦Tθ) + λR(Tθ) (2.2)

In this formulation, the three parts of registration become apparent. First we have the
transformation parametrization and the definition of the regularization termR. Second we
have the definition of the comparison criterion C. The balance between C and R is ruled
by λ. Finally we need to devise a way to reach the minimum of the energy functional and
thus find a suitable optimizer for the pairR and C.

Let us first introduce briefly some of the most common types of transformations.

2.2 Transformation Model
When we address the problem of registration from the point of view of the transformation
model, two separate classes arise. We can distinguish between the non deformable class
of registration problems on one hand and the deformable class of registration problems
on the other hand. If we speak in terms of control points and degrees of freedom, a non-
deformable transformation amounts to have a control point in each corner of the image
and depending on the type of transformation we apply some displacement to the points.
The more independent the movement of the control points is, the more degrees of freedom
we have and the wider is the range of deformation attained. In all cases the movement of
each pixel is globally dependant on the movement of the others.

A deformable transformation on the other hand does not restrain itself to the corner of
the image and places control points over all the image, this way all pixels can be moved
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independently. In practice though, having a control point per pixel is not computationally
efficient, and a control point controls a group of pixels. In the case of deformable reg-
istration the movement of each pixel is only locally dependant on the movement of the
others.
Let us review some of the most common transformation models.

2.2.1 Non-deformable transformation

In all non-deformable cases, the number of degrees of liberty (the dimension of Θ) is very
low compared to the number of pixels. The occurrences of multiple solutions to the same
problem are thus next to none. The regularization termR is of no use in this case.

Rigid body transformation: this is the simplest non-deformable transformation. Here
only rotations and translations are considered. In 3D this amounts to 3 rotation angles
and 3 translation parameters. The dimension of Θ is then 6. Examples of it being used
can be found in [Maes 1997, Roche 2001]. If the transformation is parametrized with
θ = (rα, rβ, rϕ, tx, ty, tz), then one can represent the rigid body transformation Tθ using
homogeneous coordinates (in this setting quaternions are often used to parametrize the 3D
rotation):



Rθ =


1 0 0 0
0 cos rα − sin rα 0
0 sin rα cos rα 0
0 0 0 1

 ·


cos rβ 0 − sin rβ 0
0 1 0 0

sin rβ 0 cos rβ 0
0 0 0 1

 ·


cos rϕ − sin rϕ 0 0
sin rϕ cos rϕ 0 0
0 0 1 0
0 0 0 1



Tθ = Rθ ·


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


(2.3)

Affine transformation[Jenkinson 2001]: is the most distorted type of global transfor-
mation, allowing 12 degrees of freedom in 3D. Rigid body deformations are a subset of the
affine transformations where scaling and shearing are not taken into consideration. Affine
are the most commonly used transformations and many deformable methods apply affine
registration to the images prior to the deformable registration (e.g. [Rueckert 1999]). If
θ = (θ1, . . . ,θ12) then,



10CHAPTER 2. METRIC LEARNING FOR MULTI-MODAL IMAGE REGISTRATION

Tθ =


θ1 θ2 θ3 θ10

θ4 θ5 θ6 θ11

θ7 θ8 θ9 θ12

0 0 0 1

 (2.4)

2.2.2 Deformable transformation
A wide range of deformable transformations can be found in the literature, it is out of the
scope of this work to make an exhaustive description of all the different methods, instead
we redirect the curious reader to the work of Sotiras [Sotiras 2011]. Here we will describe
two transformation models that have attracted a lot of attention in the last decade. Most
commonly, when dealing with deformable transformations, the transformation is described
in each pixel position as an additive displacement imposed to each pixel: Tθ = Id + uθ.

Diffusion Models and Demons Diffusion models are part of the physics based models
for which the transformation T is not parametrized but instead is governed by a state
equation. In the case of diffusion models, the state equation is the diffusion equation:

4u + F = 0 (2.5)

This diffusion model was introduced in [Thirion 1998], where the analogy to Maxwell’s
demons for a mixed gas is used. The demons are mathematical entities that apply forces on
a membrane to help the image diffuse through it. The membrane is one way (as with a gas)
and only let forces through in one direction. In the case of 3D medical images, demons
are placed in every location where the image is not constant (∇I 6= 0) and push the field
of deformation. The algorithm is an iterative process of small displacements for which the
optical flow is conserved. The demon force is given by optical flow with velocity v:

v =
(I − J ◦T)∇I

(∇I)2 + (I − J ◦T)2
(2.6)

There is then a regularization step on the displacement field achieved through Gaussian
smoothing. Later, in [Pennec 1999] it is shown that the Demon’s Algorithm is mathemati-
cally equivalent to the gradient descent on the Sum of Square Distance criterion:

C (I, J,T) =

∫
Ω

(
I ◦T(−1) − J

)2
(2.7)
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The Gaussian smoothing can also be interpreted in the same framework as:

R(T) =

∫
Ω

‖K ?T‖2 (2.8)

Where K is the smoothness kernel. This algorithm has grown very famous for its com-
putational efficiency and many variants have since been done. Extensions to all the com-
monly used similarity criteria have been proposed [Cachier 2003] and most notably the
diffeomorphic version of the Demon’s Algorithm was proposed in [Vercauteren 2007b].

Interpolated deformation models and Free-form deformations Interpolation models
are the physics based model counterparts, originating from Computer Vision, there is no
consideration made for forces pushing the field for deformation. The interpolation model
is based on the assumption that the displacement is known for a select number of pixel
positions in the image and the global deformation is interpolated from their movement.
Depending on the interpolation method, the moving pixels location can be placed ran-
domly in the deformation field [Shen 2002] or be placed on a regular grid as is the case
in the Free-Form Deformations (FFD) transformation model [Sederberg 1986]. Compu-
tational efficiency and interpolation accuracy made of cubic B-splines based FFDs one of
the dominant transformation models in medical image registration [Rueckert 1999].

Let us here briefly describe this model, according to the works of [Rueckert 1999]. We
consider a grid with uniform spacing δ, this grid is superimposed on the image domain.
Each vertex of the grid constitutes a control point. Since this is an interpolation model, the
transformation is parametrized by the displacement in 3D of the control points:

θ = {θi,j,k|i = {1, . . . , nx} , j = {1, . . . , ny} , k = {1, . . . , nz}}

The cubic B-splines interpolation model then writes:
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

uθ(x, y, z) =
∑3

l=0

∑3
m=0

∑3
n=0Bl(u)Bm(v)Bn(w)θi+l,j+m,k+n

u =
x

nx
−
⌊
x

nx

⌋
, v =

y

ny
−
⌊
y

ny

⌋
, w =

z

nz
−
⌊
z

nz

⌋

i =

⌊
x

nx

⌋
− 1, j =

⌊
y

nx

⌋
− 1, k =

⌊
z

nx

⌋
− 1

B0(u) =
1

6
(1− u)3

B1(u) =
1

6
(3u3 − 6u2 + 4)

B2(u) =
1

6
(−3u3 + 3u2 + 3u+ 1)

3

B3(u) =
u3

6

(2.9)

Cubic B-splines allow for a smooth transformation, and it has been proven [Choi 2000,
Rueckert 2006], that if the displacement of the control points does not exceeds 0.4δ, the
resulting transformation is diffeomorphic. In order to achieve larger displacements, a com-
position of diffeomorphic transformations is realized [Rueckert 2006].

Several regularization terms have been used for FFD based transformations. Here we
present the regularization term used in [Rueckert 1999]:

R(Tθ) =
∫∫∫

Ω

(
∂2uθ
∂x2

)2

+

(
∂2uθ
∂y2

)2

+

(
∂2uθ
∂z2

)2

+2

[(
∂2uθ
∂xy

)2

+

(
∂2uθ
∂xz

)2

+

(
∂2uθ
∂yz

)2
]

(2.10)
This term imposes a penalty on transformations that are not smooth enough. In this case,
the search space T is the space of the piecewise cubic B-splines with smoothness constraint
parametrized by λ.

2.3 Optimization strategy
The objective of this dissertation is clearly not to give an exhaustive view of the optimiza-
tion strategies. Optimization is in itself a complete field of research and many if not all
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applicable optimization strategies have been tried. Moreover, many registration methods
have tuned optimization algorithms to their special needs. Describing optimization strate-
gies exhaustively would be like trying to examine each and every registration method.
Some insight on the many optimization strategies in registration is given in [Sotiras 2011].
However, one can separate the optimization algorithms with respect to their input vari-
ables. In our case, the optimization strategy is used to find the minimum of the energy E
with respect to the parameter set θ in the search space Θ.

On one hand the space in which the solution is searched is a continuous space, and the
problems are solved in dense subspaces of R or C or even more exotic dense valued spaces.
Optimization in this continuous space is usually referred to as continuous optimization.
This is opposed to discrete optimization, the search space of which is a subspace of Z or
N

2.3.1 Continuous Optimization

A good overview of some of the most used optimization algorithms for registration can be
found in [Klein 2007]. The optimization strategy used to reach the optimal set of parameter
is iterative, starting with an initial guess θ0:{

θt|t=0 = θ0

θt+1 = θt + αtdt
(2.11)

most of the time, the search direction dt is dependant on the value of θt at previous itera-
tions, it might also be the case for the step size αt.

The simplest of all continuous optimization strategies is the gradient descent approach,
in which the step size αt is constant, and the direction dt is given by the gradient of the
energy in the direction of the parameter θ: dt = ∇θtE(θt). While simple this method
still yields good results and was used for instance in [Rueckert 1999]. The step size of
the gradient descent can also be adjusted for by line search at each iteration to yield the
maximal decay in the energy along this direction [Press 1986]. This technique however
suffers from poor convergence rate (we will not formally define convergence here but one
can view it as a stabilization in the decrease of the energy) and is appropriate only when
the estimation of the gradient is not very time consuming.

More powerful optimization strategies such as Conjugate gradient methods do not
follow directly the direction of the gradient but also take into account the direction of the
gradient at previous iterations to have a more thorough search of the space.

To have an even better convergence rate, more information on the energy functional is
needed. Second order information like the Hessian of the functional is used in the Newton-
type methods. Computation of the Hessian is usually not very efficient, and most of the
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time, only approximations of the Hessian matrix are considered which are themselves
based on approximations of the gradients of the functional as in the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method [Luenberger 2008]. Newton-like procedures are most
notably used in Demon’s registration algorithms where Gauss-Newton and other second
order method are employed [Vercauteren 2007a].

Other continuous optimization strategies include stochastic gradient strategies, in which
the gradient is approximated with the use of random perturbation vectors, this allow for
a greater computational efficiency as well as can make the method less prone to falling
into local minima. Last but not least, methods that do not make use of first or second
order information on the energy; such as the Powell’s methods can be of great interest
as we shall see in the next sections, as not all objective functions are differentiable, as
well as the estimation of the derivatives might be computationally prohibitive. Starting
from a set of initial parameter vectors (usually the normals to each axis), Powell’s method
operates by performing linear searches along each search vector, the new direction is up-
dated as a linear combination of the search vectors. Use of this method has been done in
[Maes 1997, Roche 1998, Pluim 2000, Chung 2002].

2.3.2 Discrete Optimization

We have seen in the case of continuous optimization that for most algorithms, one of
the driving evolutions is the search for more efficient methods that will allow for less
and less functions and gradient evaluations. Sometimes also, the gradient is not formally
expressible as well as the Hessian. In those cases, local approximations to these quantities
are computed, thus requiring even more computation time. Methods that do not make
use of derivatives like Powell’s do exist but are usually used when there is no access to
higher order quantities, since those method have very low convergence rate. Last but not
least, each of these methods needs an energy specific treatment and adaptation to a new
similarity criterion is not straightforward, since it implies finding derivation strategies.

This is opposed to discrete methods that perform a global search such that they are not
sensitive to the initial position θ0. They do not require the derivatives of the functional
and are very modular with respect to the change of the energy, as long as some conditions
on the energy are still respected. Lastly, the discretization of the search space allows for
computationally more efficient methods. The main drawback of these methods also stems
from the discretization, since the solution will only be as precise as the discretization is,
and augmenting the precision will go as a trade off with the computational efficiency.

Discrete optimization is closely linked to discrete graph optimization and discrete
Markov Random Fields (MRF). In the setting of graph optimization, each parameter θp
is modeled by a graph node, and the interaction between the graph parameters given by
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the functional energy E is modeled by the edges of the graph. The graph G is represented
by the set of its nodes V and edges E : G = {V , E}. The value taken by each parameter
θp is discretized and given by a label ` ∈ {`1, . . . , `N}. In this dissertation, we will only
consider graph with unary and pairwise interactions, and no clique of higher order will
be considered. This consideration constrains the energy to be the sum of unary potentials
up, p ∈ V and of pairwise potentials vp,q, {p, q} ∈ E .

E(`) =
∑
p∈V

up(`p) +
∑
{p,q}∈E

vp,q(`p, `q) (2.12)

The optimization is here done on ` in the space of allowable label sets L and the
optimal parameter θ? is given as a function f of the optimal labeling `?:{

θ? = f (`?)
`? = argmin

`∈L
E(`) (2.13)

In the case of registration, the similarity criterion will be cast onto the unary potentials
while the regularization term will be attributed to the pairwise interactions. Here we will
discuss the works of Glocker et al. [Glocker 2008], where deformable registration using
FFDs is cast into the framework of MRFs.

First of all, the similarity criterion C takes a less general form and is made into a point
wise criterion:

C (I, J ◦T) =

∫
Ω

c (I, J ◦T) (2.14)

In the case of FFD, a grid of control points is superimposed on the image, and the
grid spacing is not necessarily the same as the pixel size. In the graphical model, we
want each node to represent a control point, so we want to evaluate the similarity in each
control point. Thus we need to evaluate the contribution of each control point p ∈ G to
the similarity cost:

C (I, J ◦T) =
1

|G|
∑
p∈G

∫
x∈Ω

η̂ (|x− p|) c (I(x), J ◦T(x)) dx (2.15)

where η̂ is the term that projects the information from the image level to the grid level:

η̂ (|x− p|) =
η (|x− p|)∫

x∈Ω
η (|x− p|) dx

(2.16)

and η is the function that weights the contribution of each control point to the deformation
following the deformation model. In the case of FFD, η is a sum of B-splines interpolation
functions as presented in equation (2.9).
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Now using the similarity cost in equation (2.15), we can construct the unary potential
by defining that the labels will have influence on the control point’s displacement θ`pp :

up(`p) =

∫
x∈Ω

η̂ (|x− p|) c
(
I(x), J(x + θ`pp )

)
dx (2.17)

the pairwise term, representing the regularization of the deformation field, is defined as a
simple Ising model:

vp,q(`p, `q) = ωpq
∣∣θ`pp − θ`qq ∣∣ (2.18)

this regularization makes a registration process similar to fluid-like registration presented
in [Christensen 1994]. Finally, the edge system E is defined as E = {(p, q)|p ∈ V ,q ∈ N (p)},
where N (p) is an appropriate neighbourhood of p, and allows for a regularization of the
deformation field in the neighbourhood of the control point.

A whole lot of algorithms have been around to solve discrete MRFs with pairwise inter-
actions, but two of them stand out as they have actually been used for medical image reg-
istration, TRW-S [Kolmogorov 2006] and Fast-PD[Komodakis 2007, Komodakis 2008].
Both are based on an Linear Programming (LP) relaxations of the problem, as the integral
LP program is NP-hard. In TRW-S (sequential tree-reweighted message passing) the graph
is decomposed into a set of trees, then sequentially, every node of the graph is visited and
belief propagation is performed on each tree containing it. The solution is obtained by
averaging on the result of all trees involved. TRW-S was successfully used for registration
in [Shekhovtsov 2008]. Fast-PD on the other end treats the problem as a primal-dual gap
minimization problem. It is very flexible for image registration since it only requires the
pairwise potentials to be non-negative, the approximate optimality is guaranteed and com-
putationally very efficient. Successful applications of FastPD to registration problems can
be found in [Glocker 2008, Glocker 2009, Ou 2009, Zikic 2010].

2.4 Image Matching Criteria
The image matching criterion is the core subject of this thesis. So far we talked about
the transformation model and the optimization strategy, but in the end the quality of the
registration will greatly depend on how well we can tell if two images are into alignment.
A lot of alignment strategies have been devised over the years, some are completely inde-
pendent from the transformation model and optimization strategy and some are not. We
will consider the latter case in a spirit of conciseness and also considering that the added
modularity of considering each brick separately leads to more flexible registration algo-
rithms.

Matching criteria can be easily classified in two categories by identifying the type of
images they regard. When faced with two images that are issued by the same modality,
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or the same type of modality, we are in the case of uni-modal image matching and we
have naturally a uni-modal matching criterion. In the case where we have two different or
different looking modalities, we are in the multi-modal case and we have a multi-modal
criterion.

Let us put this intuition in a mathematical setting. The assumption here is that the
two images are related by two quantities, the first that we are trying to recover is the
transformation T, the second, χ is an intensity mapping that relates the intensities of one
image to that of the other:

I(x) = χx ◦ J ◦T(x) (2.19)

χ is unfortunately typically unknown. To cover the most general of cases, we describe the
intensity mapping as position dependent: χx.

Using this definition, we can give a more precise definition of the uni and multi-modal
problems. Uni-modal problems are cases in which χx is usually the combination of the
identity function or a linear function of the intensities, independent of the position, with a
position independent (assumption of a Gaussian distribution) noise. In multi-modal cases,
χx is assumed to be a combination of a non-linear sometimes position dependent (i.e.
the same intensity input will give different intensities outputs depending on the position)
intensity mapping with an unknown distribution noise.

The multi-modal case is thus arguably a much harder case than the uni-modal one. The
uni-modal case was historically the first to be studied, and some of the techniques used for
uni-modal cases can be modified to fit multi-modal problems.

2.4.1 Uni-modal Registration

In the case where χ is an identity map or a low level Gaussian distributed noise, using
the natural distance in the space of images (namely the euclidean distance) is the most
straightforward criterion. This criterion is referred to as the Sum of squared differences
(SSD):

C (I, J ◦T) = SSD (I, J ◦T) =

∫
Ω

(I − J ◦T)2 (2.20)

Considered as an alternative to SSD when the noise distribution is deviating from a
Gaussian distribution, the L1 distance in the space of images is the Sum of Absolute Dif-
ferences (SAD):

C (I, J ◦T) = SAD (I, J ◦T) =

∫
Ω

|I − J ◦T| (2.21)
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In the more involved case where χ is a linear map with position independent noise,
statistical measures of correlation can be considered. One can notably cite the Normalized
Cross Correlation (NCC)or the Correlation Coefficient (CCoef)[Kim 2004] considered
when dealing with uni-modal images related by a linear intensity transformation:

C (I, J ◦T) = NCC (I, J ◦T) =

∫
Ω

(
I − I

) (
J ◦T− J ◦T

)√∫
Ω

(
I − I

)2 ∫
Ω

(
J ◦T− J ◦T

)2
(2.22)

All the measures presented so far are focusing on pixel intensities and low level statis-
tics for image comparison. While fast, these methods do not take into account higher order
information that arises in the neighbourhood of a pixel, and such measures are very sensi-
tive to variabilities between images. In MRI images for instance, two images of the same
patient acquired with the same modality can appear very different due to the fact that there
is no control on the intensity range in the image and that there is a bias field in the image,
which is a position dependant transformation of the intensities.

In the recent years a lot of interest has grow for metrics that are not unimodal per-se
but applied to unimodal problems with large variations. The local variations of the bias
field are precisely the most difficult to account for since they often imply some nonfunc-
tionalities when looking at the intensity mapping from the intensity space of one image to
the intensity space of the other image. To account for this phenomenon, local metrics have
been developed [Hermosillo 2002, Cachier 2000, Lorenzi 2013].

In [Shen 2002], the comparison of attributes vectors (wich we will also name feature
vectors) is considered, using image segmentations, each voxel in the image is given at-
tributes depending on the edges next to it. While pixels with similar values arise a lot in
images, it is much more seldom to have similar attribute vectors in different locations of
the image, which reduces greatly the number of local minima. Following the same in-
tuition, [Xue 2004] extracts multiscale, translation and rotation invariant attribute vectors
that are based on Daubechies Wavelets.

2.4.2 Multi-modal Registration
Even though uni-modal criteria can be used with some success in the multi-modal case,
when the intensity relationship between images becomes non-linear or position dependant,
the uni-modal metrics deliver only deliver sub-par results.

As noted in [Sotiras 2011], two types of approaches can be distinguished for multi-
modal registration:
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1. The use of statistics based and information theoretic measures that recover non-
linear or even non-functional interactions. We will name this kind of measure Broad
multi-modal metrics as they apply to any two kinds of modality without regards for
the specifics of the considered modality.

2. Casting the multi-modal problem into a new uni-modal problem, either by simu-
lating one modality from the other (as seen in Chapter 4), or by embedding both
modalities in a common image space (as seen in Chapter 5 and 6). We will name
this kind of measure Modality Specific metrics as they have been specifically tailored
for a pair of modalities.

Broad Multi-Modal Metrics Probably the most commonly used multi-modal registra-
tion metric is the Mutual information (MI) [Wells III 1996, Viola 1997, Collignon 1995,
Maes 1997]. Mutual information is an information theoretic measure where the objective
is to maximize the quantity of mutual information between two images. The quantity of
information is described by the Shannon entropy of the image:

H(I) = −
∑

i∈{0,...,m}

p (I (x) = i) log p (I (x) = i) (2.23)

and

H (I, J ◦T) = −
∑

i,j∈{0,...,m}

p (I (x) = i, J ◦T (x) = j) log p (I (x) = i, J ◦T (x) = j)

(2.24)
the Mutual Information is then expressed as:

C (I, J ◦T) = MI (I, J ◦T) = H(I) +H(J ◦T)−H (I, J ◦T) (2.25)

Interestingly enough, the mutual information can be expressed as a divergence between
densities using the Kullback-Leibler divergence DKL(p‖q) =

∑
i p(i) log(p(i)/q(i)):

MI (I, J ◦T) = DKL(p(I)p(J ◦T)‖p(I, J ◦T)) (2.26)

In this form, the maximization of the mutual information can be interpreted as the maxi-
mization of the dependence between both images since if p(I)p(J ◦T) = p(I, J ◦T) both
images are independently distributed. A survey on mutual information based methods is
available in [Pluim 2003].
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Normalized Mutual information (NMI) [Studholme 1999] is an improvement over Mu-
tual information, since it is less sensitive to the evaluation of the joint entropyH (I, J ◦T)
that might be impaired when there is no sufficient overlap between images.

C (I, J ◦T) = NMI (I, J ◦T) =
H(I) +H(J ◦T)

H (I, J ◦T)
(2.27)

NMI was successfully used in numerous studies [Studholme 2001, Blackall 2000, Castellano-Smith 2001,
Pluim 2000, Studholme 2000].

Another successful approach to the broad multi-modal metric problem is the correla-
tion ratio (CR) [Roche 1998]. As opposed to mutual information, this measure assumes
a functional relationship between images and accounts for non-linearities in the inten-
sity mapping χ. However in addition to mutual information, correlation ratio takes into
account the proximity in the intensity space and thus conveys spatial information in the
metric. Correlation ratio is expressed as a variant of the correlation coefficient (CCoef):

C (I, J ◦T) = CR (I, J ◦T) =
V ar (E[I|J ◦T])

V ar (I)
(2.28)

Just as Mutual-information is the Kullback-Leibler divergence of two intensity distri-
butions, other types of divergences and entropies have been proposed.

In [Pluim 2004], Pluim et al. look at the whole class of information theoretic mea-
sures from which mutual information is drawn. This class is named the class of the f–
Divergence of probability distributions. The f–divergence (fD) is a generalization of the
Kullback-Leibler divergence and is defined as:

f (P‖Q) =
∑
i

qif

(
pi
qi

)

qif

(
pi
qi

)
=

 0 if pi = qi = 0

pi lim
x→∞

f(x)

x
if pi > 0, qi = 0

Again, the f–divergence can be used for comparing two images by maximizing the statis-
tical dependence of the distributions of the two images:

fD (I, J ◦T) = f(p(I)p(J ◦T)‖p(I, J ◦T)) (2.29)

the use of some well studied f -divergences was shown to yield more accurate results for
CT-MR registration and MR-PET registration.

Addressing the shortcomings of mutual information, namely the lack of convexity and
the lack of symmetry of the measure, the Jensen-Rényi Divergence (JRD) was proposed
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[He 2003, Hamza 2003]. The Jensen-Rényi Divergence is based on a generalization of the
Shannon entropy that is the Rényi entropy:

Hα(I) = Hα(p (I (x) = 1) , . . . , p (I (x) = m)) (2.30)

=
1

1− α
log

∑
i∈{0,...,m}

(p (I (x) = i))α

Where α ∈ (0, 1) and when α tends to 1, it can be shown that Hα converges to the
Shannon entropy H . Rényi entropy is concave. Using this definition and defining pij =
p (J ◦T (x) = j|I (x) = i) , the Jensen-Rényi Divergence between two images is defined
as:

C (I, J ◦T) = JRD (I, J ◦T) (2.31)

= Hα

(∑
i

wipi1, . . . ,
∑
i

wipim

)
−
∑
i

wiHα (pi1, . . . , pim)

in this formulation, if wi = p (I (x) = i) and α = 1 then JRD becomes the Mutual infor-
mation. In [Hamza 2003], wi = 1/m is shown to yield better results.

In [Neemuchwala 2002] a more simple version of the JRD is used, the α–Jensen Dif-
ference (αJD):

C (I, J ◦T) = αJD (I, J ◦T) (2.32)
= Hα(βJ ◦T) + (1− β)I)− βHα(J ◦T)− (1− β)Hα(I)

Setting α = 1 and β = 1/2 gives again Mutual-information. In this work, a minimum
spanning tree is used to estimate the Rényi entropy, which yields significantly lower mem-
ory usage and time complexity.

The major problem of the information theoretic measures presented here is that they
only take into account single pixel probabilities. This presents the problem of the validity
of the measure since you can randomly permute the pixels in one image and still have the
same entropy for instance (note that the joint entropy does not suffer from this problem)
[Rueckert 2000]. To circumvent the problem, in [Rueckert 2000], higher order mutual
informations are considered with 4D-histograms that take into account the neighbourhood
information. Even though this method proves to yield better results than traditional mutual
information, this kind of technique suffers from the curse of dimensionality. When the
number of dimensions increases, the number of samples for each dimension has to increase
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accordingly to keep the statistical relevance of the criterion. Measures have been taken to
counteract this problem, like reducing the number of histograms bins or taking random
lines [Bardera 2006, Rueckert 2000], but the problem is inherent to the method and even
higher orders cannot straightforwardly be considered.

The introduction of local context in information theoretic measures has also been done
by means of computations of local mutual informations [Karaçali 2007, Loeckx 2010,
Zhuang 2011, Russakoff 2004]. This kind of methods, since they measure locally the
images can handle much more efficiently position dependent intensity changes such as the
bias field in MRI images and position dependent noise.

Modality Specific Metrics There is a natural transition between the information theo-
retic metrics we have seen earlier and Modality specific metrics. We have seen that most
information theoretic metrics can be expressed as a divergence or a distance between two
intensity distributions. Most of the time for broad multi-modal metrics, those two distri-
butions are the joint distribution of intensities in both images and the product of intensity
distributions in both images.

Now let us assume that we have access to a pair of perfectly registered images, before
the registration (Il, Jl). The idea behind modality specific metrics is to use the prior knowl-
edge of the already aligned images and drive a better registration using this knowledge.
The first attempts to use this knowledge have been using the aforementioned distribution
divergences. Indeed, since we have a training pair of registered images, we can for instance
evaluate their joint distribution of intensities: plearned(Il, Jl). Now a reasonable objective
can be that of minimizing the divergence between the learned distribution and the actual
distribution, for instance with the Kullback-Leibler Divergence(KLD) [Chung 2002]:

C (I, J ◦T) = KLD (I, J ◦T) = DKL

(
plearned(Il, Jl)‖p(I, J ◦T)

)
(2.33)

Following the same idea, in [Guetter 2005], the KLD is evaluated in conjunction with
mutual information between the source and the deformed target, in an attempt to benefit
from both worlds and to not rely entirely on the learned distribution, in cases where the
new pair is too different from the training pair.

Similarly to [Guetter 2005], the same rationale of mixing both worlds has been in-
vestigated in [Liao 2006], where a divergence different form KLD is beeing used, the
Jensen-Shannon Divergence (JSD):
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C (I, J ◦T) = JSD (I, J ◦T) (2.34)

=
1

2
DKL

(
plearned(Il, Jl)

∥∥∥∥1

2

(
p(I, J ◦T) + plearned(Il, Jl)

))
+

1

2
DKL

(
p(I, J ◦T)

∥∥∥∥1

2

(
p(I, J ◦T) + plearned(Il, Jl)

))
The JSD has the advantage over KLD of being symmetric and has all the mathematical

properties of a distance metric. Also JSD is bounded by log 2, which makes it easier to
normalize and balance against the mutual information term.

A more recent set of techniques consider this problem in a two steps problem. First
both images are projected into the same image space, in which the projected representa-
tions of the images are considered comparable using simple measures uni-modal measures
(e.g. SSD). Then the registration is conducted in this uni-modal space using the simple
measure.

A first instance of this framework is when one image is projected in the image space of
the other. In essence this is a simulation of one modality from the other. Given the image
in one modality, one tries to guess how it would look had it been acquired by the other
modality. This approach will be discussed in details in chapter 4.

A second instance of the modality specific metric problem, is when we project in a first
step both modalities in a common space, and then perform the comparison of the images
in this new space. For this type of methods we will refer to common space embedding. To
some extent, all the information theoretic measures used with learned joint probabilities
can be seen as common space embedding. Indeed in these methods, we first compute the
joint probability of images which in turns is a projection in the space of the joint histogram.
Then comparison is performed against another joint probability.

As we have already seen , when making a joint histogram, only pixel-wise information
is taken into account. Other approaches have been taken where images from both modal-
ities are first transformed into an image that does not focus on pixel intensity information
but rather on intensity variation information, or even local statistical information. The ra-
tionale behind these methods is that since we are taking images of the same type of tissue,
the intensity information may be different but describe the same reality. This intuition is
revealed by projecting the images into a space in which intensity information is not taken
into account anymore.

This is the case in [Maintz 2001] where images are first transformed with mathemat-
ical morphology operators such as erosions and dilatations, openings and closings. Then
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the transformed images are rigidly registered using cross-correlation. An example of the
transformed images is shown in figure 2.1. The resulting transformation still loses a lot of
information from the original image and some artefacts are added due to misinterpretations
of the noise. While this method is reported to perform relatively well for rigid registration,
it is hard to see it performing equally well in the case of deformable registration.

Figure 2.1: Figure extracted from [Maintz 2001]: Top row: left, original PET image, right,
transformed image, Bottom row: left, original MR image, right transformed MR

More recently in [Wachinger 2011], the same kind of approach is taken but the pixel
intensity information is more exploited. Two kinds of transformation are discussed. In
both cases patches of the images are extracted densely, so for each pixel position in the
image there is a corresponding patch. Then each patch undergoes a transformation that
maps it to a scalar value that is representative of the patch. The transformations that
are considered respect two rules, the first one is the locality preservation, meaning that
if two patches are similar in terms of intensity (under the `2 norm for instance), then
their transformations must be similar. The second condition, named structural equivalence
ensures that similar patches from both modalities are mapped to similar transformation
values. The first transformation studied that satisfies both these rules is the local Shannon
entropy of the patch. Entropy images of MRI images can be seen in figure 2.2.

The second transformation involves manifold learning, Laplacian eigen maps are used
to define the transformation. For each set of patches for both images, an adjacency graph
is first created, the proximity of the patches in this graph is proportional to their euclidean
distance. Then using Laplacian eigen maps a unidimensional embedding is constituted
in which the proximity relationships of the graph are conserved. This unidimensional
mapping is in effect a scalar map from the patches and represents the image. Figure 2.3
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Figure 2.2: Figure extracted from [Wachinger 2011]: Top row: original images, from left
to right T1, T2 and PD MRI images, bottom row entropy images

depicts the difference between entropy images and Laplacian images. On can see that
the intensity mapping is fairly consistent across MRI modalities. One can still question
the efficiency of the method when considering harder pairs of modalities in which the
embeddings are much less comparable.

Lastly, [Lee 2009] paves the way for multi-modal metric learning for image registra-
tion. Using a training data set of perfectly aligned images images, similar patches are
extracted in similar locations. The similarity is learned on these patches (xi,yi). Using
the properties of kernels, the patches are projected in feature spaces of possibly infinite
dimensions. The projections are compared in the feature spaces by means of a learned
similarity function:

s(x,y) =
n∑
i=1

∑
y

αiψ(xi,x) · (ψ′(yi,y)− ψ′(yi,y)) (2.35)

where ψ and ψ′ are kernels, here, Gaussian kernels are considered; This measure is learned
by means of a quadratic program that is in essence a modified Support Vector Machine:

min
w,ξ

1

1
‖w‖2 + C

n∑
i=1

ξi (2.36)

s.t. s(xi,yi)− max
y,y 6=yi

s(xi,y) ≥ 1− ξi ∀i

ξ ≥ 0 ∀i

Si then represents the set of the most violated active constrains for each instance i. This
measure, although performing well for rigid registration has not been yet demonstrated
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Figure 2.3: Figure extracted from [Wachinger 2011]: Top row: Original images, Middle
row: entropy images, Bottom row: Laplacian images

for deformable registration. Although timing is not discussed in the paper, the estimation
of the similarity criterion might take time, since the solving of a quadratic problem is
considered. With the added consideration that cross validation will be needed to find the
parameters of the kernels, the learning time of the similarity might be problematic.



Chapter 3

Preliminary: Feature extraction and
Gabor Features

In the next chapters, the focus will be on finding an appropriate similarity criterion for
comparing two images issued by different modalities. The leading idea is in this work is
to have a dense criterion, meaning that we want a criterion that is defined for each and
every pixel or voxel (we will always refer to pixel, even in 3D for the sake of clarity)
location in the image. The methods that we will use to infer the criterion are based on
machine learning methods, which from a set of training data, extract a pattern from the
available information and allow us to reproduce this pattern on unforeseen examples. The
quality of the reproduced pattern greatly depends on the quality of the input information.

Often times, working with the pixel information, i.e. intensity, is not a viable option.
Medical images are corrupted by noise and image intensities are by definition sensitive
to noise, ideally we would like to extract information at the pixel position that is true
to the underlying image information not corrupted by noise. More generally, we would
like information that is the less sensitive to image deteriorations as possible and the more
close to the true image information as possible. Another great disadvantage of the pixel
intensities is that they don’t convey much information about the image, and based on this
sole information the learned criterion might be performing poorly. Ideally we would like
to have for each and every pixel location a sense of the neighbouring pixels, this additional
information will help us distinguish between pixels that might have the same intensities
but different surroundings, and will also improve the learning for the same reason.

Instead of extracting only the intensity information at the pixel location, now we are
going to extract features or feature vectors, while the intensities lie in a one dimensional
space (usually R), feature vectors lie in a d dimensional space X ⊂ Rd. This obviously
leads to computational overhead that is only acceptable thanks to the steady advances in
computing power in the recent years. Nonetheless, the methods that we will use will have

27



28CHAPTER 3. PRELIMINARY: FEATURE EXTRACTION AND GABOR FEATURES

to be able to scale well with large d.

3.1 Feature extraction framework
Let us now consider an image I : Ω ⊂ R{2,3} −→ I ⊂ R, here I denotes the intensity
space and is a feature space of dimension 1. We can define a feature extraction function π
that acts on an image I and a pixel position x, and extracts a feature vector of I in position
x:

π :

{
I × Ω −→ X ⊂ Rd

(I,x) 7−→ π (I,x)
(3.1)

Usually, π is parametrized with values that reflect the extent of the neighbourhood con-
sidered or the level of invariance to various image artefacts.

As an example let us now see the most commonly used feature extraction function, the
patch extraction function. A patch is a simply a vector of the intensities that are encoun-
tered in a square (or cubic) vicinity of the position of interest as demonstrated in figure
(3.1), for a 3× 3 patch.

Figure 3.1: Extraction of a 3× 3 feature patch π3,3 (I,x) at position x

The patch extraction function can also be viewed as a image filtering process. In a
general case, let us consider the m× n patch extraction function πm,n. If we consider the
filter bank:
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Πk
m,n ∈Mm,n :

{ [
Πk
m,n

]
i,j

= 1 if i+mj = k[
Πk
m,n

]
i,j

= 0 otherwise (3.2)

whereMm,n is the space of matrices m× n. Then we have:

[πm,n (I,x)]k = Πk
m,n ? I (x) , k ∈ {1, . . . ,mn} (3.3)

Feature extraction has been widely used in the Computer Vision community and no-
tably for feature detection in images [Mikolajczyk 2005, Schmid 2000], yet the literature
is much scarcer in the case of medical images. This is mainly due to the problem of the
computation times that are prohibitive when considering volumes instead of planar im-
ages. However some very popular computer vision methods have made their way through
medical imaging. Built in invariances in feature descriptors are paramount for medical
image analysis, where images issued by the same modalities show a lot of variability due
to the lack of consistensy in image intensities, heavy image noise and image artifacts.

Looking for locally invariant descriptors is closely related to texture analysis, a good
introduction to texture analysis can be found in [Tuceryan 1993]. Texture analysis among
others can be used for [Tuceryan 1993] texture classification, texture synthesis, shape from
texture and texture segmentation applications. Here our interest will be on texture segmen-
tation, since it often involves finding texture descriptors for each pixels and then clustering
the descriptor space.

Texture analysis for texture segmentation methods, can roughly be divided into two
categories:

• Statistical methods

• Signal Processing methods

3.1.1 Statistical Feature descriptors
Statistical methods compute statistical measures on windows densely sampled in the im-
age, the main disadvantage of these methods is the high computational complexity and the
computation window size, which is in most cases too big (such as 19 × 19 pixels), thus
yielding very slow computation times.

Haralick Texture Features (GLCM) Statistical methods were among the first methods
considered for texture analysis. They were introduced in [Haralick 1973]. They introduced
the now broadly used notion of gray level co-occurrence matrix (GLCM). These features
where presented in 1973, tested on a PDP 15/20 prehistoric computer, and are still widely
used.
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The GLCM measure the occurrence frequency of two intensity levels i and j at a given
distance d and in a given orientation θ in a window W of size Lx × Ly ; intensity levels
come from a sub-sampling of the intensity range. To account for rotation, it is proposed
[Haralick 1973] to use the average and the range over the orientations. 14 features in total
are presented, among those four of them are invariant to monotonic gray scale transfor-
mations, those are the most used features in the literature. Haralick Texture features have
been successfully used in a medical context in [Pescia 2008].

Local Binary Patterns (LBP) They have been introduced in [Ojala 2002], where is
defined a local operator that can be evaluated at each pixel of the image and returns a
scalar value. This value is designed to be gray-scale, scale and rotation invariant.

If we assume that the pixel where we compute the LBP is at (0, 0) and its value is gc,
then let us define the values gp given by the intensities at (−R sin(2πp/P ), R cos(2πp/P ))
then:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (3.4)

where

s(x) =

{
1, x ≥ 0
1, x < 0

(3.5)

Then the rotation invariance is achieved through the minimum in all the circular rotations:

LBP ri
P,R = min {ROR(LBPP,R, i) | i = 0, 1, . . . , P − 1} (3.6)

Some of the shortcommings of LBP shortcommings are pointed out in [Zhou 2008]

• It is sensitive to noise

• Only uniform parts of the texture are accurately described, leaving much information
behind.

In [Zhou 2008], the proximity of the non-uniform patterns to the uniform ones is learned
in order to take into account the non uniformity. Examples of use in medical applications
include [Setia 2006].

Ranklets Introduced in [Smeraldi 2002], Ranklets provide an interesting way of merg-
ing the filtering schemes and local statistics for local descriptor design. A thorough de-
scription of the process is provided in [Smeraldi 2003]. Ranklets are a complete family
of multiscale, orientation selective features, based on the Haar wavelet. They use the
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wilcoxon statistic on ranks, so the completeness here, refers to the ability, given the com-
plete family of features, to recover the full pixel rank of the image, and not the pixel values
since they are discarded from the beginning.

Let r(IW (x)) denote the rank in the ordering of pixel intensities, of the sample I(x) in
the window W . The window size is ruled by the Haar wavelet support. The Haar wavelet
window is divided into two partitions later called treatment (T ) and control (C), according
to the sign of the Haar wavelet (see figure 3.2).

Figure 3.2: Figure extracted from [Smeraldi 2002]: Haar ranklets partitionning

DefiningWj
s as:

Wj
s =

∑
x∈Tj

r(IW (x)) (3.7)

The value value of the rankletRj is given by:

Rj = 2
Wj

s − (N/2 + 1)N/4

N2/4
− 1 (3.8)

Following the multiscale design of Haar wavelets, ranklets are multiscale.
A review of Ranklets performance is given in [Masotti 2008], they show that ran-

klets are very robust to gray scale variations and show that the average value over the
vertical, horizontal and diagonal ranklet images, yield an almost completely invariant de-
scriptor for 90◦-rotations. Ranklets have successfully been used in medical applications in
[Masotti 2006].

3.1.2 Signal Processing methods
A good introduction to texture classification and segmentation can be found in [Randen 1999].
A comparative study is held between the various filtering methods for texture classifica-
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tion. The basic assumption for most filtering approaches is that the energy distribution in
the frequency domain identifies a texture. The frequency domain is thus analyzed using
different filters and their processed outputs forms feature vectors for each and every pixel
in the image. The filtering output is usually not processed as is, but is going through a local
energy function first to lessen the impact of noise and to accentuate the discrimination.

Steerable Filters Intoduced in [Freeman 1991], Steerable filters allow to get the re-
sponse of the filter for virtually any orientations with a composition of responses to a
base of filters. Theoretical arguments are given to find the conditions under which any
function f(x, y) steers, i.e. , when it can be written as a linear sum of rotated versions of
itself.

f θ(x, y) =
M∑
j=1

kj(θ)f
θj(x, y) (3.9)

The response of filters to different orientations leads to very efficient detections [Jacob 2004]
and was recently used in a medical setting for guide wire detection [Honnorat 2010].

Monogenic Signal The monogenic signal was introduced by [Felsberg 2001] as an ex-
tension of the Analytic signal to a N-dimensional space. The analytic signal is used to
decouple the local magnitude and the local phase of a signal in 1D, as shown in figure 3.3.

In 2D, not only the local phase and the local energy are accessible but also the local
orientation (see figure 3.4). They are accessible through a filtering process using the filters:

H1(ω1, ω2) =
iω1√
ω2

1 + ω2
2

H2(ω1, ω2) =
iω2√
ω2

1 + ω2
2

(3.10)

Then the local amplitude, local phase and local orientation respectively A,ϕ, θ:

A(x1, x2) =
√
f 2 + (h1 ? f)2 + (h2 ? f)2

ϕ(x1, x2) = acos
(
f(x1, x2)

A(x1, x2)

)
θ(x1, x2) = atan2 (h2 ? f, h1 ? f)

(3.11)
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Figure 3.3: Decoupling of a sine wave moduled by a decaying exponential with the ana-
lytic signal

Figure 3.4: figure extracted from [Kokkinos 2008]: Monogenic Signal example

The local phase and the local orientation are particularly interesting in our case, since
they present local gray scale invariance. Examples of use in medical imaging include:
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[Pan 2006, Grau 2007, Mellor 2004].

Wavelets Some of the computer vision favorite image texture descriptors have crossed
through medical image processing. It is the case of the very popular wavelet bases that pro-
vide a way to decompose an image in frequency and space on a complete base [Mallat 1999]
that have been used in a medical setting for instance in [Xue 2004].

Scale Invariant Feature Transform (SIFT) features [Lowe 2004] are probably the most
used features in the computer vision community currently. The feature consists in a nor-
malized histogram of gradient orientation and magnitude that is computed for each point
and weighted according to their distance to the point of interest, this makes the feature
detector scale invariant and robust to changes in the image orientation. Variants of the
SIFT descriptors have been proposed, where the focus is set on making a very fast feature
extractor [Juan 2009]. The application of SIFT features to medical images can for instance
be found in [Han 2010].

3.2 Gabor features
Gabor filters are very popular in image processing and have been widely used in medical
applications. Named after Denis Gabor, the filter is in essence a gaussian filter modulated
by a sine wave. In 2D, many parameters can be set, such as the width of the gaussian (2
parameters), the frequency and the phase of the sinusoid and the orientation of the wave
(3 parameters).

The 2D gabor function g(x, y) is defined as:

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ i 2πWx

]
(3.12)

Parameters σx and σy set the width of the gaussian filter, and paremeter W sets the fre-
quency of the sine wave. It is interesting to take a look at the Fourier transform of the
gabor filter G(u, v):

G(u, v) = exp

[
−1

2

(
(u−W )2

σ2
u

+
v2

σ2
v

)]

σu =
1

2πσx

σv =
1

2πσy

(3.13)
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if we only look at the half peak value level set (an ellipse in which more than 75% of the
energy of the gaussian is contained), then we get an ellipse with parameters proportionate
to σu and σv, centred in W on the axis of u (see figure 3.5(a)).

In actuality the gabor filter covers all the Fourier space, but its energy is concentrated
around W and 75% is in the half peak level set. Filtering with this gabor filter will mainly
give a response in the frequency area covered by the ellipse in figure 3.5(a). Ideally we
would like all the Fourier space to be covered, so we are going to apply rotations and
scaling to g (equivalently to G) to be able to cover all the space:

gλ,θ(x, y) = λg (λ (x cos θ + y sin θ) , λ (−x sin θ + y cos θ)) (3.14)

(a) (b)

Figure 3.5: Visualization of the half peak ellipse of a gabor filter in frequency space. (a)
viszualization of the ellipse parameters, (b) rotation by parameter θ.

In essence, all these parameters are linked, and the condition that the set of gabor filters
(a filter bank) should pave the frequency space as much as possible reduces the parameter
space. In [Manjunath 1996], a discrete parametrization to the filter bank is given that
allows to only keep two parameters, the number of orientations K and the number of
scales S and set 2 frequencies that are the upper and lower frequencies of interest, Uh an
Ul respectively. Then solving for the original parameters such that each half peak ellipse
in the filter bank touch as shown in figure 3.6, yields:
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W = Uh (3.15)

λ = a−m =

(
Uh
Ul

)− m

S − 1
m ∈ {0, . . . , S − 1} (3.16)

θ =
nπ

K
n ∈ {0, . . . , K − 1} (3.17)

σu =
(a− 1)Uh

(a+ 1)
√

2 ln 2
(3.18)

σv = tan
( π

2K

)√ U2
h

2 ln 2
− σ2

u (3.19)

Working with Multi-Modal MRI images and PET-CT images, we found that Uh = 0.2 and
Ul = 0.05 yields the best metric learning generalization results.

Figure 3.6: Figure extracted from [Manjunath 1996], a paving of the Fourier space where
the half peak magnitudes touch to minimize the gaps as well as the redundancy. Here
K = 6 and S = 4

Computation of the Gabor features is usually very slow, especially in the low frequen-
cies were the extent of the filter is very large. This becomes an even greater problem when
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considering 3D images. In this thesis we used the approach found in [Zhan 2003] where
instead of computing a set of 3D gabor features, two orthogonal sets of 2D Gabor features,
as shown in figure 3.7. Using a second gabor 2D function h(y, z) defined as:

h(y, z) =
1

2πσyσz
exp

[
−1

2

(
y2

σ2
y

+
z2

σ2
z

)
+ i 2πWy

]
(3.20)

And hλ,θ(y, z) in the same way as in equation (3.14) we compute the 3D Gabor Fea-
tures by first filtering by g then by h.

Such Gabor features were successfully used in [Sotiras 2010, Ou 2009, Ou 2011, Wang 2010,
Xiang 2011, Xiang 2011, Xiang 2012, Parisot 2012a].

Figure 3.7: Figure extracted from [Zhan 2003], instead of computing 3D gabor features,
two orthogonal sets of Gabor features are considered.

3.3 Fast Infinite Impulse Response Anisotropic Gabor fil-
tering

When considering the convolution with Gabor filters, the filter support while infinite can
be large if we only consider the components above some threshold. This makes the com-
putations of the gabor filter usually computationally very demanding, especially when we
consider a filter bank of 128 filters (2 × 16 orientations ×4 scales), on 3D images. Here
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we used the recent advances in the field of Infinite impulse response filter to build a fast
anisotropic Gabor filter bank.

Let us first consider and decompose the expression of the Gabor function:

gλ,θ(x, y) =
λ

2πσxσy
exp

[
−λ

2

2

(
(x cos θ + y sin θ)2

σ2
x

+
(−x sin θ + y cos θ)2

σ2
y

)]

· exp [i2πλW (x cos θ + y sin θ)]

= wλ,θ(x, y) cλ,θ(x, y) (3.21)

wherewλ,θ is the gaussian filter and cλ,θ is the sine wave modulation. Following [Bernardino 2006]
if we notice that for all k, l ∈ N2:

cλ,θ(x− k, y − l) = exp [i2πλW ((x− k) cos θ + (y − l) sin θ)]

= exp [i2πλW ((x cos θ + y sin θ)− (k cos θ + l sin θ))]

= cλ,θ(x, y) c?λ,θ(k, l) (3.22)

where c? is the complex conjugate of c. Then we can rewrite the convolution:

wλ,θ cλ,θ ? I(x, y) =
∑
k,l

I(k, l)wλ,θ(x− k, y − l) cλ,θ(x, y)(x− k, y − l)

= cλ,θ(x, y)
∑
k,l

I(k, l)c?λ,θ(k, l)wλ,θ(x− k, y − l)

= cλ,θ(x, y) ·
[(
I · c?λ,θ

)
? wλ,θ(x, y)

]
(3.23)

This last equation is very interesting since it replaces the convolution with a gabor function
with a modulation by a sine wave, followed by a convolution with a gaussian and demod-
ulation by a sine wave. Convolution with a gaussian filter is a very active and researched
field and, current algorithms provide very fast implementations even for anisotropic gaus-
sian functions. Modulations and demodulations are simple multiplications and do not give
significant computational overhead. More over, when we treat a set of images with the
same dimensions (as it is the case for the slices of a 3D volume), we only need to compute
cλ,θ once, and only the fast gaussian filtering is required for each image.

In [Bernardino 2006], only the isotropic case is considered, indeed the computation of
fast infinite impulse response (IIR) isotropic gaussian filters has been used for a long time
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(see [Deriche 1993] for instance). Infinite impulse response filters, are not based on the
convolution with a discrete window but give a response densely for each and every pixel
in the image, without regards for the size of the window since the filter is considered to
have an infinite support.

Recently, fast computations of IIR anisotropic gaussian filters has been proposed in
[Geusebroek 2003], the implementation of this method1 has been used to make fast IIR
anisotropic Gabor filtering in this thesis.

Lastly we would like to point out that since we treat each slice independently this
process is highly parallelizable.

3.4 Building invariances for Gabor filter banks

Gabor filters are natively robust to noise and perfectly adapted to medical images. But
other invariances can be brought to the Gabor filtering framework with minimal computa-
tional overhead. The first very common invariance that can be brought to the filter is the
invariance to intensity shifts, if we denote by g̃ the new filter, then intensity shift invariance
is:

∀x, y g̃ ? (I(x, y) + c) = g̃ ? I(x, y) (3.24)

This is simply done by setting to 0 the ‘DC term’ (zero frequency term) of the Fourier
transform of the filter. Only setting to zero the DC term, leads to artefacts such as ringing
since the cut off in frequency space is too harsh, instead setting to zero this term (which
in turn is only removing the mean of the filter), we remove a gaussian function with peak
value equals to the zero value in frequency to have a smooth cut-off.

Scale and rotation invariances can also be crucial to a good performance in registra-
tion, since most registration algorithms perform local scalings and rotations. Fortunately,
the gabort filter bank provides a sampling of the rotation and scale space, reorganizing
each extracted feature vectors into a 2D array with respect to scale and orientation, it is
easy to see that a rotation of the image around the pixel position of the feature vector
amounts to a translation in the array, and the same with the scale. Using this fact and
following [Kokkinos 2008], we compute the Fourier Transform Modulus of the 2D array
which is itself invariant to translations, thus removing the dependance of the feature vector
to translations and scalings.

1Source code available at http://www.science.uva.nl/ mark/downloads/anigaussm.zip at the time of writ-
ing
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3.5 Experiment
Let us have a look here at the differences between patch based features and Gabor based
features. We took a brain image and only consider half of the image, the other half of the
image is a symmetrized version of the first half. The second half is corrupted by noise as
can be seen on the top row of figure 3.8. Now we extract a feature vector (either patch or
Gabor) at one position in this image (either of the red squares in the top row of figure 3.8),
and compute the mahalanobis distance of this feature vector with all the feature vectors
extracted in the image. This results in a distance map, a data set that is the size of the
image and represents a map of all the features vectors to the one considered.

In this distance map, we would like to see a narrow low spot at the extracted pixel
position, that would assess the similarity of this pixel with its neighboring pixels, and also
a low spot in the symmetrized position corrupted by noise, that would assess the robustness
of the feature to noise corruption.

Figure 3.8) is arranged in 3 rows, the first row is the original image, the red squares
are the positions where the compared feature vectors were extracted. Since we are dealing
with 3D images, we show an axial view and a sagittal view of the brain. Next there is two
sets of two rows, each set corresponds to a pixel position (a red square in the top row). In
the top row of each of these sets is the experiment with the Gabor features, where 4 scales
were taken and only 5 orientations, yielding a total of 40 features. Computation time for
this brain image, 256× 256× 48 in size, was 19 seconds. And no parallelization was done
to make the computations faster. The bottom row of each set displays the experiment with
5× 5× 3 patches. The last figure in each row depicts a line extracted in the distance map
along the arrow, of the left image. The arrow points to the point of extraction of the feature
and the red circle shows the expected position of the low spot in the distance map.

The first remark we can make about this experiment, is when we look at the left part
of the images. We can see that it is much easier to distinguish an extracted Gabor feature
vector from all the other features vectors than it is for a patch. Gabor features are much
more discriminative in this case. On the right of the images, especially on the last row,
we can see that the addition of noise renders the patches completely useless since no low
point is found in the part corrupted by noise. On the other hand, Gabor features still yield
significant low spots in the areas corrupted by noise. When the feature vector is extracted
in an area with a strong edge, the corruption by noise renders the problem harder, since it
makes the edge less detectable, thus making the distance maps less accurate.
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Figure 3.8: Gabor feature and patches distance maps. Top row: original image where the left
of the brain is the original brain and the right is a symmetrized version of the left corrupted by
noise. The red squares represent the features for which the distance maps are created. For each
set of 2 rows, we depict the distance maps for Gabor features (top row) and patches (bottom row).
The arrow points to the position of the feature vector of comparison and the red circle locates the
expected position of the low value. On the right are diagrams showing one line of the distance map
extracted on the axial image (left most) along the arrow.
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Chapter 4

3D image regression for multimodal
registration

In this chapter let us consider that we have two image modalities A and B, and we want to
align images that are issued by such modalities. The source image will be denoted by JB
to show that it has been issued by B, in the same manner, the target image will be denoted
by IA. The intensity spaces of each image will be denoted as IA and IB respectively. The
goal of this chapter is to map the target image from intensity space IA to intensity space IB
and then carry out the comparison of images in IB. This will be done through a mapping
f : IA −→ IB, in practice, f may not be applied directly on the intensities of IA but on
feature vectors extracted on it. In essence this is a simulation of one modality from the
other. Given the image in one modality, one tries to guess how it would look had it been
acquired by the other modality. There are two ways of doing this, one can use the physical
properties of the imaging modalities and try to reproduce the imaging process given one
image. The other way would be by learning the relationship between intensities on a set
of perfectly aligned images, and use this knowledge to try and guess one the appearance
of one modality in the other modality’s space.

In [Roche 2001], the simulation of an ultrasound (US) image is done from the inten-
sity and gradient information of an MR image. Even though basic US physics are not
respected, building an appropriate metrics for the resulting images yield good results. In-
spired by the previous results, [Wein 2008] simulated an ultrasound (US) image is from a
CT image. The CT image is first projected onto the plane of incidence of the US, then a
2D US image is simulated from this CT. Here, the simulation is done using the physical
properties of US images. The transmission and reflections of the US beams can be com-
puted using the acoustic impedances of the tissues, which are assumed proportional to the
tissue density. Since the X-ray attenuation in the CT images is also proportional to the
tissue density, a backscatter US image can be recreated from the CT (figure 4.1). Using

43
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the simulated image, the registration is performed in the image space of the ultrasound
image, and the images are compared using a modified version of the correlation ratio.

Figure 4.1: Figure extracted from [Wein 2008]: On the left, CT images projected on
the plane of incidence of the US. Top right is the real US frame and Bottom right is the
simulated US image

An important drawback of the physics based methods is that the physics based model
has to be computed in a timely manner which cannot be done in all cases, and mostly that
it is not modular in the sense that a new model has to be devised for each new pair of
modalities.

A more modular method would be to learn the correspondence between images and
be able to predict one image from the other by using the knowledge of previously aligned
pairs. Let us assume that we have access to a data base of perfectly aligned pairs of images
of modalities A and B, this data set will be denoted as {(IA, JB)train

i : i ∈ 1, . . . , N}, then
given a new pair of images (Inew

A , Jnew
B ) that are not aligned, we want to first simulate the

appearance of IA in modality B: f (Inew
A ) then compare both images in the intensity space

IB with the distance function df :

df (Inew
A , Jnew

B ) = ‖f (Inew
A )− Jnew

B ‖
2 (4.1)

This problem, stated as above is a problem of statistic regression, let us first review the
usual statistic regression algorithms.

4.1 Regression
In this chapter we will use the language of statistic regression and use the term target
variable to express the varaible the regression is trying to infer, and use the term regressor
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to express the varaibles that are used to explain the target variable.

4.1.1 Linear regression

This is the most basic type of regression. An hypothesis is made on the linear relationship
between the variable to explain and the regressors. The model can be written :

f(x) = α0 +
n∑
i=1

αix
i (4.2)

where xi is the ith component of x. Let us write

F =

{
f ∈ C1 (X ) | ∀x ∈ X , f(x) = α0 +

n∑
i=1

αix
i

}

We look then in F for the regression function f , minimizing the least square problem :

argmin
f∈H

{
n∑
i=1

(yi − f(xi))
2

}

Then if we write the matrix M :

M =

 1 x1
1 · · · xp1

1
... · · · ...

1 x1
n · · · xpn

 (4.3)

Then the minimization problem solution writes :

α = (MTM)−1MTY (4.4)

where Y is the vector [y1, . . . , yn].
Linear regression is the most basic type of regression but its understanding leads to

very powerful algorithms. Most data sets do not behave linearly, so applications of linear
regression are very rare. Also and this is one of the major set backs, the matrix (MTM) is
not guaranteed to be well conditioned or even invertible , and this happens if two variables
are co-linear which might arise. Reducing the matrix M to only its non-zero (or above
some threshold) singular values solves this ill condition problem but the co-lineartiy of
variables is not taken into account.
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4.1.2 Ridge regression
Ridge regression solves the problem of the ill-posedness of linear regression by adding a
regularization on the parameters of the regression function. The problem to be minimized
then becomes:

argmin
f∈H

{
1

n

n∑
i=1

(yi − f(xi))
2 + λ ‖f‖2

}
(4.5)

Which can also be rewritten:

argmin
α∈Rn

{
1

n
(Mα− y)T (Mα− y) + λαTMα

}
the solution of which is

α = (M + nλI)−1 Y (4.6)

other norms than the L2 norm can be considered which lead to other types of regulariza-
tion. In this case the problem is no longer ill posed, since (M + nλI) is of full rank.

4.1.3 Kernel Ridge Regression
One way to cope with the linearity of linear regression and ridge regression is to use
kernels. As it is sometimes difficult to readily work on the input space, we usually use
a mapping φ from X to a Hilbert space H (the feature space) were the computational
scheme is well known. It is often very hard to compute the feature φ(x) on an element in
X . Instead of computing φ directly, it is often better to compute the inner-product in the
feature space, which is given by the mapping of a kernel on the input space :

k(x,x′) = 〈φ(x), φ(x′)〉

The kernel k has to be symmetric, and positive definite, that is :

∀ (a1, . . . , an) ∈ Rn, ∀ (x1, . . . ,xn) ∈ X ,
n∑

i,j=1

aiajk(xi,xj) ≥ 0

Given that we look for a solution in the feature space, the representer theorem yields :

∃K p.d. kernel and α ∈ Rn s.t. f̂(x) =
n∑
i=1

αiK(xi,x)
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Writing K the matrix of coefficients K(xi,xj), The problem then simplifies as:

argmin
α∈Rn

{
1

n
(Kα− y)T (Kα− y) + λαTKα

}
(4.7)

It is now an ordinary quadratic problem, the solution of which is :

α = (K + nλI)−1 y (4.8)

Kernel ridge regression can be very powerful and was used for image regression in
[Hofmann 2008], where kernel ridge regression is used to predict the intensities of CT
images given MR images. In the case of image prediction, the feature vector x is assumed
to be a pair made of a local patch and normalized coordinates: x = (pi, ci), and the kernel
is defined as:

k(xi,xj) = exp

(
−‖pi − pj‖2

2σpatch
2

)
exp

(
−‖ci − cj‖2

2σpos2

)
(4.9)

σpatch and σpos are determined by cross-validation. This method, however, makes use of
the pixels coordinates in the image to deal with position dependent image variations. In
the case of static image prediction (when there is no need for registration), this method is
very adapted, but as soon as the new image is deformed, and so different from the training
set in position, the prediction fails to be accurate. The authors tried to learn each kernel
function f in sub regions to localize the problem but report possible registrations with only
minor misalignments. In figure 4.2, one result extracted from [Hofmann 2008] is shown
in the case of the static CT prediction from an MR image.

The biggest drawback of kernel methods is that the kernel matrix is the size of the
training sample which doesn’t allow for large training sample base since we need to invert
the kernel matrix in the kernel ridge regression.

4.1.4 Bayesian interpretation of linear regression
We have seen that the regression function is a linear combination of regressors in the case
of linear regression. In order to model the variability in the training data set, we need to
add noise to the prediction in order to recover each and every sample, if we assume there
is N samples in the training data set then:

∀i ∈ {1, . . . , N}, yi = α0 +
n∑
j=1

αjx
j
i + εi
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Figure 4.2: Figure extracted from [Hofmann 2008]: Left, MR image, Middle, Predicted
CT, Right, Original CT

where ε is a random variable. The solution we gave to linear regression assumes a normal
distribution to ε, that is:

∀i ∈ {1, . . . , N}, εi ∼ N (0, σ)

And we can write the conditional probability of y given x as a gaussian distribution:

p (y |x) = N
(
y
∣∣xTα, σ) =

1

σ
√

2π
exp

[
−1

2σ2

(
y − xTα

)2
]

(4.10)

this formulation will help us to model mixtures of linear regressions.

4.2 Mixture Models

Mixture models are a good way to model multi-modal probabilities, in the sense where
one probability distribution is not enough to fit the data appropriately. Discussions on
Mixture models can be found in [Bishop 2006]. Mixture models are the linear combination
of several uni-modal probability distributions. They make the assumption of a hidden
mixture variable z, that defines for each sample, which probability distribution it follows.
A mixture model can be represented by a very simple two nodes graph, as shown in figure
4.3.
The joint probability of this model writes:

p(x, z) = p(z)p (x |z ) (4.11)

z is a latent variable so we do not have access to it, if we assume that z is a discrete variable
and we marginalize over it, we get the probability of x:
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Figure 4.3: Two nodes generative model

p (x |θ ) =
∑
i

p
(
z = i

∣∣θ1
i

)
p
(
x
∣∣θ2
i

)
where θ1

i and θ2
i are the parameters of the distribution of z and x in the mixture i. θ is the

concatenation of these parameters.
If we have N samples drawn independently and identically distributed then the proba-

bility of the random variable X = (x1, . . . , xN) writes:

p (X |θ ) =
∏
n

∑
i

p
(
zn = i

∣∣θ1
i

)
p
(
xn
∣∣θ2
i

)
Estimation of the parameters by maximum likelihood is not trivial due to the summa-

tion after the multiplication that stays after application of the logarithm. Estimation of the
parameters is done by Expectation Maximization.

4.2.1 Expectation maximization
If Z = (z1, . . . , zN) could be observed, then finding the parameters would amount to
maximizing the complete log likelihood :

`c (θ |x, z ) = log p (x, z |θ )

Z is not observed though and we have to marginalize to get the log likelihood :

` (θ |x) = log p (x |θ ) = log
∑
z

p (x, z |θ )

The summation is not easily tractable for a maximization problem. In the complete log
likelihood what happens is that since Z is not observed, `c is a random variable. We can
however average `c using an averaging distribution q(z|x).
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We define the expected complete log likelihood as:

〈`c (θ |x, z )〉q =
∑
z

q(z|x, θ) log p(x, z|θ)

Maximizing a lower bound on the log likelihood

` (θ |x) = log p(x|θ)

= log
∑
z

p(x, z|θ)

= log
∑
z

q(z|x)
p(x, z|θ)
q(z|x)

≥
∑
z

q(z|x) log
p(x, z|θ)
q(z|x)

= L(q, θ)

In the last equation, we used the Jensen’s Inequality
The EM algorithm consist in maximizing this lower bound, to that end, a coordinate

ascent is sufficient :

(E step) q(t+1) = argmax
q

L(q(t), θ(t))

(M step) θ(t+1) = argmax
θ

L(q(t+1), θ(t))

M step

L(q, θ) =
∑
z

q(z|x) log
p(x, z|θ)
q(z|x)

=
∑
z

q(z|x) log p(x, z|θ)−
∑
z

q(z|x) log q(z|x)

=
〈
`c
(
θ(t) |x, z

)〉
q
−
∑
z

q(z|x) log q(z|x)

thus maximizing L(q, θ) with respect to θ is equivalent to maximizing the expected com-
plete log likelihood.
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E step The maximum ofL(q, θ) with respect to q is attained when q(t+1)(z|x) = p(z|x, θ(t))
indeed it is easy to see that

L
(
p
(
z
∣∣x, θ(t)

)
, θ
)

= `
(
θ(t) |x

)
Which is the upper bound on L(q, θ). We can consider p

(
z
∣∣x, θ(t)

)
as the best current

guess on the values of the latent variables given x, this estimation allows to compute an
expectation of the complete log likelihood, that will be maximized at the next iteration
yielding the new parameters θ(t+1).

The EM algorithm In the EM iterations, the M step finds the parameters that increase a
lower bound on the likelihood, and the E step makes the the bound as close as possible to
the actual function to actually act on the log likelihood.

(E step) q(t+1) = p(z|x, θ(t))

(M step) θ(t+1) = argmax
θ

〈
`c
(
θ(t) |x, z

)〉
q(t+1)

(4.12)

4.2.2 Gaussian Mixture Model

As an example of EM parameter estimation and a good intuition on mixtures of linear
regressions discussed later, let us briefly see the parameter estimation of Gaussian mixture
models. The normal distribution writes:

N (x |µ,Σ) =
1

(2π)m/2 |Σ|1/2
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
The probability of a data-set sample following a Gaussian mixture model then writes:

p (xn |θ ) =
∑
i

τ in N (xn|µi,Σi)

where τ i = p(z = i). Parameter estimation via EM leaves us with the problem of the
estimation of p(z|x, θ(t)) which is simply solved by application of the Bayes rule:
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p
(
zn = i

∣∣xn, θ(t)
)

=
(
T in
)(t)

=
p
(
zn = i,xn

∣∣θ(t)
)

p (xn |θ(t) )

=
τ

(t)
i N

(
x|µ(t)

i ,Σ
(t)
i

)
∑

j τ
(t)
i N

(
x|µ(t)

j ,Σ
(t)
j

)
The parameters in the M step are obtained through simple derivation:

µ
(t+1)
i =

∑
n (T in)

(t)
xn∑

n

(
T jn
)(t)

(4.13)

Σ
(t+1)
i =

∑
n (T in)

(t)
(
xn − µ(t+1)

i

)(
xn − µ(t+1)

i

)T
∑

n (T in)(t)
(4.14)

τ
(t+1)
j =

1

N

∑
n

(
T in
)(t) (4.15)

4.2.3 Mixture of regression models
Mixture of regression models or mixture of experts have been introduced in [Jacobs 1991].
The basic idea is to infer the conditional distribution using a mixture of regression models
which are local conditional probabilities. The overall conditional probability is obtained
by smoothly mixing local conditional distributions. The model is represented by a 3 nodes
generative graph shown in figure 4.4.
The probability of the model writes:

p(x, y, z) = p(x)p(z|x)p(y|x, z) (4.16)

And we get the conditional probability by marginalization over z:

p(y|x) =
∑
z

p(z|x)p(y|x, z)

In [Jacobs 1991] p(z|x) is modeled using a gating network with a soft-max function:

p(zi = 1|x, ξ) = τi(x, ξ) =
eξ

T
i x∑

j e
ξTj x

(4.17)
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Figure 4.4: Conditional regression model

Mixture of Linear regressions We are now left with the modeling of the term p(y|x, z)
which we can easily do by recalling equation 4.10

p (y |x, z ) = N
(
y
∣∣xTα, σ)

The whole model then writes:

p(y|x, θ) =
∑
i

τi(x, ξ) N
(
y
∣∣xTαi, σi ) (4.18)

Parameter inference: Parameter inference is once again done through expectation max-
imization. Let the complete data set be Dc = {(xn, zn, yn) : n = 1, . . . , N}, where zn ∈
{0, 1}K is a discrete variable, and K is the number of mixture components. The complete
log likelihood writes

`c (θ |Dc ) =
∑
n

∑
i

zin log
[
τi (xn, ξ) p

(
yn
∣∣Zi = 1,xn, θi

)]
Since we don’t have access to the hidden variables zn we write the expected complete log
likelihood:

〈`c (θ |Dc )〉q =
∑
n

∑
i

q
(
zin = 1 |xn

)
log
[
τi (xn, ξ) p

(
yn
∣∣zin = 1,xn, θi

)]
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The expectation step follows directly that of the Gaussian mixture model and using Bayes
rule we have:

p
(
zn = i

∣∣xn, yn, θ(t)
)

=
(
T in
)(t)

=
τ

(t)
i (xn, ξ) p

(
yn

∣∣∣zin = 1,xn, θ
(t)
i

)
∑

j τ
(t)
j (xn, ξ) p

(
yn

∣∣∣zjn = 1,xn, θ
(t)
j

)
The maximization step is trickier, indeed due to the presence of the soft-max function,
there is no closed form solution for the inference of the parameters.

Modeling with a Gaussian Mixture: In [Xu 1995] modelling of p(z|x) is done using a
two node generative model like the on in figure 4.3:

p(x, z) = p(z)p(x|z)

which yields:

p(z|x) =
p(z)p(x|z)∑
z p(z)p(x|z)

Now let us assume that z is discrete and that p(x|z) follows a normal distribution we have
:

p
(
zi = 1 |x

)
=

p(zi = 1)N (x|θi)∑
j p(z

j = 1)N (x|θj)
(4.19)

Using p (zi = 1 |x) as is, does not solve the problem, in [Xu 1995] the approximation
is made that the parameters inference of p (zi = 1 |x) is done on:

p
(
zi = 1,x |µi,Σi, γi

)
= p(zi = 1)N

(
x|θi

)
= γi N (x|µi,Σi) (4.20)

But the overall conditional probability is still evaluated with p (zi = 1 |x). The expected
complete log likelihood rewrites:

〈`c (θ |Dc )〉q =
∑
n

∑
i

q
(
zin = 1 |xn

)
log
[
γi N (x|µi,Σi) p

(
yn
∣∣zin = 1,xn, θi

)]
its maximization through derivation yields:
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µ
(t+1)
i =

∑
n (T in)

(t)
xn∑

n

(
T jn
)(t)

(4.21)

Σ
(t+1)
i =

∑
n (T in)

(t)
(
xn − µ(t+1)

i

)(
xn − µ(t+1)

i

)T
∑

n (T in)(t)
(4.22)

γ
(t+1)
i =

1

N

∑
n

(
T in
)(t) (4.23)

α
(t+1)
i = (MTT

(t)
i M)−1MTT

(t)
i Y (4.24)

σ
(t+1)
i =

∑
n (T in)

(t) (
y − xTnαi

)∑
n (T in)(t)

(4.25)

where M has been defined in equation 4.3 and Ti is the matrix with diagonal T in.

4.3 Experiments with regression

We argue here that mixture of experts is very well suited for a medical application. First
there is only one parameter to set for the algorithm and it is the number of experts used. As
with all learning algorithm, the higher the number of experts the closest we will be to the
actual distribution, but also we will be more prone to over-fitting and find ourselves with
experts that try to mostly fit noise. The choice of the number of experts is thus a trade-
off between accuracy and over-fitting. The structure of mixture of experts accommodates
well with non-linearities thanks to the combination of linear regressions, and is flexible
on the input data. We will only require that the data is well dimensionned, meaning that
there is not one dimension in the input vector that overpowers the others, to that end
the data might be redistributed on a unit sphere by centering it (removing its mean) and
scaling it (divide by its standard deviation), a prior PCA might be also considered. Second,
contrarily to other regression algorithms, the output of mixture of experts is a conditional
probability, maximizing it yields the regression function but we have the possibility to
exploit the whole modeled information, this is particularly helpful for medical images as
will be shown in the next section. Let us first see the performance of mixture of experts on
some synthetic and real data sets.



56 CHAPTER 4. 3D IMAGE REGRESSION FOR MULTIMODAL REGISTRATION

4.3.1 Synthetic Data
Let us have a look at the performance of Mixture of experts on scalar inputs and outputs,
this way we can visualize the data. The first experiment in figure 4.5 is very common
in non-linear regression, and particularly suited for a mixture of linear regressions. The
distribution of points follows two straight lines intersecting in the middle. We expect to
have two gating functions one that will act on the left part for a first expert and one that
acts on the right part for a second expert. In this experiment, we set the number of experts
to 2 which is obviously the optimal number. The obtained optimal conditional probability
neatly follows the test distribution.

(a) Test distribution (b) Conditional probability

Figure 4.5: One connected cloud of points with two intersecting lines, the color plot on
the right represents the estimated densities, gradients of red represent a high density while
gradients of blue represent a low density

The second experiment is intended to highlight the fact that not only do we have access
to a regression function by maximizing the conditional probability but also we have access
to a full probability map that allows us to model the non-functionalities in the data, like
when the same input yields different outputs, and it possibly not due to the noise. In order
to do so, the next data set is a stacked distribution of Gaussian distributed points, shown in
figure 4.6(a). In figure 4.6(b), the conditional probability is estimated right on the points
distribution with Parzen Windowing (see [Bishop 2006] on Kernel density estimators for
instance) to give an intuition of where the highest concentrations of points are located.
The mixture of experts is initialized using a prior clustering, then on each cluster, a linear
regression is conducted and all the parameters are estimated that gives us the initial param-
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eters. The initial clustering is done using a mixture of Gaussian distributions ( initialized
with k-means which is common practice ) and is displayed in figure 4.6(c). Finally we
present the conditional probability estimated by Mixture of experts in figure 4.6(d). We
can see that if we draw a vertical line in the middle of the distribution, we will end up with
3 distinct local maxima and while the distribution itself doesn’t give us a way to chose
between them, we have more that just the maximum of the conditional probability. In
the next section we will discuss how we can select the right local maximum for medical
imaging applications.

(a) Test distribution (b) Conditional probability estimated right on the
distribution with Parzen Windowing

(c) Initial clustering (d) Estimated conditional probability

Figure 4.6: Stacked mixture of Gaussian distributions
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4.3.2 Real Data

To showcase the capabilities of a mixture of linear regressions, we will experiment on two
pairs of images both perfectly co-registered. The images are T1 (source) and T2 (target)
MRI images of the brain taken during the same session and while the patient’s head was
immobilized. Images can be seen in figure 4.7. For this experiment we only use one brain,
it has to be noted that for more statistical relevance more patients brains should be used
for training, and this experiment should be more considered as a proof of concept.

(a) source T1-MRI (b) target T2-MRI

Figure 4.7: Two trainig data set examplar images

The training data-set consists in patches (see section 3.1) of size 5× 5× 3, amounting
to 75-dimensional feature vectors, that are extracted densely on the source training im-
age, and the scalar intensities extracted on the target training image. The computational
efficiency of the algorithm heavily relies on the size of the training set, for that reason
the black background (all-zero patches) was removed from the training set. In the case
where several brain images are considered, uniform sampling of the data set is required
(statistically relevant sampling can also be considered in order to drive a better regression).

A visualization of the data points distribution is not easy in the 76 dimensional space.
Here we propose to visualize density of the source intensity (coincidentally also the center
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of each patch) plotted against the target intensity as shown in figure 4.8(a). This visual-
ization was also used to perform the initial clustering of the data set using a mixture of 30
Gaussian distributions as can be seen in figure 4.8(b). The clustering of a 76-dimensional
data set would be extremely biased towards the source feature vectors, this is why we re-
sorted to cluster on the intensity space, and translate the cluster memberships to the data
set elements.

(a) source and target intesities density distribution (b) Initial clustering of the data set for 30 experts

Figure 4.8: Visualization of the densities, on the left is the joint histogram of input and
output intensities (we show here only one input intensity for visualization purposes but
computations were carried out in a multidimensional input space). On the right we show
the initial clustering with 30 experts in the same intensity space as the left for visualization
purposes as well.

The testing of the mixture of experts on a new T1-MRI source image can be seen
in figure 4.9. Image 4.9(b) has been obtained by the maximization of the conditional
probability. We can see that the regressed image is a lot like the actual T2-MRI image in
figure 4.9(c), even though the intensity distribution is far from linear as can bee seen in
figure 4.8(a). Yet the result image presented here would be hard to accurately register to a
T2-MRI, some intensities are clearly off in this image. Most notably there is a white halo
around the brain. This is easily explainable by the fact that the background black matches
the ventricles black in the T1-MRI, maximizing on the conditional probability just misses
the non functionality that the black intensity can map to either a white or a black intensity.
This precise issue will be discussed in the next section.

4.4 Solving the one to one problem
Such situations can arise where there is not a one-to-one application between a feature
vector and an intensity. If we remind ourselves that Ω is the spatial domain for all images,
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(a) T1-MRI test source Image (b) Maximum of the conditional
probability

(c) Actual T2-MRI target Image

Figure 4.9: Testing Mixture of experts on a new T1-MRI image

x a position vector in Ω, and that J denotes the source image and I denotes the target
image, the aim of image regression is to define an operator f such that:

∀x ∈ Ω, f (J (x)) ' I (x) (4.26)

It is important to note here that f is not dependent on the spatial position x as is the
case in [Hofmann 2008]. Such a model is compact but also ill-posed. The same origin
intensity (different spatial positions) could be mapped to numerous different intensities in
the target space, or

J (x0) = J (x1) and I (x0) 6= I (x1) (4.27)

These situations cannot be modeled by a unique function of the input space, we refer
to these situations as non-functionality. To cope with such non-functionalities we adopt a
two-component approach. First we augment the information space on which the transport
function is defined using a feature vector extracted at the point position x as input of
the regression function. Following the notation we introduced in 3.1, this feature vector
extraction will be denoted as π (I,x). The feature extraction function is assumed to bring
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some context to the extracted feature by taking into account the direct neighborhood of
the spatial point extraction. This augmentation of the information on each pixel drastically
reduces the occurrences of the situation earlier described. There is a trade-off to consider in
he design of the feature extraction function, the bigger the neighborhood it will act upon,
the less ambiguity we will encounter, but in the same time the less general the learned
function will be. Hence we will still face situations where ambiguities arise as explained
in figure 4.10. For medical images, this lack of one-to-one mapping is due to the use of
different modalities and to the locality of some artifact in images.

Figure 4.10: The locality of some image features prevents us from assuming a one-to-one
correspondence between feature vectors.

We can see this effect in the images used in the previous section, if we take a closer
look at figure 4.8(a) we can see that one intensity can map to multiple intensities as shown
in figure 4.11. We also can see that this problem still arises even when neighborhood
information is taken into account in the form of a feature vector, as we saw in the previous
section with the problem of the white halo around the brain.
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(a) Graphed line is extracted along the red line (b) For some input intensities, 3 output intensities
can be found

Figure 4.11: Visualization of the local maxima for one input intensity

4.4.1 Markov Random Field smoothing
As we have seen, mixture of experts provides us with a complete conditional probability
profile instead of only a regression function. Using this fact, for each and every point
location in the image, instead of the maximum of the conditional probability, we can focus
on local maxima of the conditional probability. For each local maximum we have access
to the conditional probability of its occurrence which we can easily transform into a score
that will help us chose the right local maximum. The decision of taking only local maxima,
instead of the full probability profile is only a choice of discretization of the problem with
computational efficiency in mind. Optimizing the score would obviously lead to the having
the maximum a posteriori (MAP) of the conditional probability and give rise to the same
image as the one in the previous section. Instead, we chose to balance this score with a
smoothing constraint that forces a decision on an intensity in one position of the image to
be consistent with decisions in a defined neighborhood of the image.

Let us assume that we retain M local maxima, for each pixel location x ∈ Ω. Now let
us assume that those maxima are ordered according to their probability, and then labeled
with L = {`1(x), . . . , `N(x) : ∀x ∈ Ω}, where `1 denotes the maximum with highest
probability. If we consider the function lmax that extracts the local maxima of the condi-
tional probability and order them: lmax (p (I (x) |J (x) ,θ) , `n (x)), that will be written
lmaxn(x) for short, then we have:

p (I (x) = lmax1(x)|J (x) ,θ) ≥ . . . ≥ p (I (x) = lmaxN(x)|J (x) ,θ) (4.28)

Now let us consider the discrete Markov Random Field energy (we refer the reader to
section: 2.3.2):
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E (L) =
∑
x∈Ω

− log (p (I (x) = lmax(x)|J (x) ,θ))

+ γ
∑
x∈Ω

∑
y∈N (x)

|lmax(x)− lmax(y)| (4.29)

where the first part of the energy, the unary term, is the data fidelity part of the energy,
and minimizing it alone would yield the MAP. The second part of the energy, the pairwise
term, is the smoothing part of the energy, when minimized it enforces a continuity among
chosen local maxima in a neighborhood of x denoted asN (x). Minimization of this kind
of energy has been discussed in section 2.3.2. In this work we chose to solve this problem
with the now widely used Fast-PD solver [Komodakis 2007, Komodakis 2008], that has
proven computational efficiency on this kind of problem. This method leaves us with 3
new parameters to set: the number of retained local maxima M , the smoothness balancing
term γ and the neighborhood paradigm N (x).

4.5 Results
Some of the results reported here were published in the International symposion on biome-
diacla imaging (ISBI) [Michel 2010]. Two different types of data sets were considered to
evaluate the potential of our method. The first data set consists in MRI images of the brain
with 3 MRI modalities (T1, T2 and Proton density -PD-) acquired in the same session and
thus perfectly co-registered, of 10 patients, resulting in a total of 30 images. These images
were kindly provided by Professor Christos Davatzikos and his team1. The second data
set consists in 4 images of perfectly aligned whole body correction attenuated PET images
and CT images that were acquired concurrently (attenuation correction is done using the
CT image). We chose to only work with the chest sections of the images due to the easily
spotable features such as the lungs. This data set was kindly provided by the french based
company Intrasense2. In all cases all images were rigidly registered to one image of the
data set in order to remove the rigid registration component of the equation.

For all experiments, we found that setting the number of experts to 30 yields good
results without going into the pitfall of over fitting. The value of 30 experts was set us-
ing 10-fold cross-validation on a random subset of the patches. The number of allowed
local maxima was set to 3 as it was the maximal number of concurrent local maxima en-
countered. We experimented with several neighborhood paradigms, linking each node to

1http://www.rad.upenn.edu/sbia/
2www.intrasense.fr
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6 of its neighbors already yields good results in the smoothing, in the experiments that we
run, having a larger neighborhood resulted in over smoothed results and deteriorated the
overall quality. Finally the parameter γ regulating the trade off between smoothing and
the data fitness, was set using leave one out cross-validation on the comparison with the
actual expected data (mean absolute error).

Following the results obtained in figure 4.9, the effect of the MRF smoothing on the
image can be seen in figure 4.12. We can see that the white halo around the brain has dis-
appeared, some artifacts of lesser importance have appeared though like the black ‘hole’
that appears just under the ventricles. These artifacts appear when the probabilities be-
tween two different output intensities are very close and the decision by the MRF solver
amounts to a ‘coin flip’. Overall the quality of the image has been improved.

(a) Maximum of the conditional
probability

(b) MRF smoothed image (c) Actual T2-MRI target Image

Figure 4.12: Effect of the MRF smoothing

4.5.1 Evaluation on brain MRI data set
In this thesis we will discuss the results on two type of multi-modal registrations: T1 to
T2-MRI registration and T1 to PD-MRI registration, the reverse case of PD to T1-MRI
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registration is discussed in [Michel 2010]. In each case we used 4 images for training,
leaving 6 images in the testing database.

Evaluation of the registration is done in an inter-patient setting: one of the patient is
taken as the target image and we register all of the 5 remaining images to this patient. In
a clinical case we would have an image of one patient acquired with one modality and
an image of another patient acquired with another modality. We would for instance have
one T2 image for the target patient and 5 T1-MRI images to register it to. In such a
setting, evaluation of the registration can be done with landmarks that have been placed
by an expert (typically a clinician), or using segmentations that have been performed on
the same organ on all the images to see if after deformation the segmentations align well,
using the Dice coefficient for instance. The Dice coefficient measures the proportion of
overlap between two regions compare to their overall area, if the two regions are denoted
ΩA and ΩB the the dice coefficient D(ΩA,ΩB) is:

D(ΩA,ΩB) =
2 |ΩA ∩ ΩB|
|ΩA|+ |ΩB|

(4.30)

This type of evaluation will be carried out using segmentation of the ventricles on all
images.

But a second type of evaluation can also be carried out in our unusual setting. Since
for each T1 image in our example we have access to the corresponding T2 image, we can
also apply the deformation on this image and directly compare both the target T2 image
and the deformed T2 image. This comparison will be carried out using the Mean absolute
difference of images.

As we have seen, very few algorithms have used an approach similar to ours to solve
this problem, so we will compare ourselves to state of the art multi-modal similarity mea-
sures such as Mutual Information (MI) and Normalized Mutual Information (NMI). As we
have seen in section 2.1, registration is an ill-posed problem and this is only solved by the
adjunct ion of a regularization term. Two solutions given by two different algorithms are
only comparable at the same level of regularization. When we compare the mean absolute
differences, a range of different values for the regularization parameter has been consid-
ered to remove the dependence on this parameter. When comparing the Dice coefficients
we used another coefficient the Harmonic energy [Yeo 2009] to quantify the amount of
regularization. The dice coefficient is often used in segmentation to compare two different
segmentations. In registration we argue that looking at the increase in the dice coefficient
before and after registration gives a much better view of the performance of the algorithm.
Indeed when the starting Dice coefficient is very low, even the best registration algorithm
will not get a Dice coefficient close to 1. Yet we can still compare the performance of
different registration algorithms on such images by comparing the increase in the Dice
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coefficient. Here only increases in the Dice coefficient are presented. Two transforma-
tion have the same amount of regularization when their harmonic energy are equal. The
harmonic energy of a deformation field u writes:

HE(u) =
1

|Ω|

∫
Ω

‖J(u(x))‖2 dx (4.31)

where J(u(x)) is the Jacobian of the deformation field. The lower the harmonic energy,
the more rigid and smooth the transformation is. Again, since we have access to the
T2 (in this example) images for all the patients, we can directly compare ourselves to
the cases where we register those images uni-modally, which would be the oracle in this
case. We performed 5 registration experiment for each harmonic energy level, for 20
different harmonic energy levels in total amounting to 200 registration experiment for
each similarity measure.

T1 to T2-MRI image registration In figure 4.13 an examplar simulated image of the
testing set is shown. Then our method is compared to mutual information and the ideal
case of the unimodal SSD in figure 4.14. We can see that our algorithms performs much
better than Mutual information on this data set and also that the results are very close to
the uni-modal case which confirms the visual clue we have by looking at the simulated
images. In figure 4.15 we compare the results on the dice cofficient for our method and
the Normalized mutual information similarity measure. Showing again the superiority of
our method over state of the art similarity measure at all harmonic energies.

T1 to PD-MRI image registration T1 to PD-MRI registration is a more challenging
case due to the peculiar intensity distribution of the PD images. As can be seen in figure
4.16. Yet we can see in figure 4.17 and figure 4.18 that our method still yields better results
than Mutual information and normalized mutual information, especially when we look at
the ventricles segmentation performance since the simulation of this part is particularly
accurate.

4.5.2 Evaluation on chest PET-CT data set
Here we present result images on a much harder data set, the chest PET-CT data set. Here
the response intensities in the PET image are sometimes not related at all to the input
intensities of the CT, but are the result of proton emissions induced by the tracer. This
renders the task of simulating one image from the other impossible as can be seen in
figure 4.19.



4.5. RESULTS 67

(a) T1-MRI source image (b) MRF smoothed image (c) Actual T2-MRI target Image

Figure 4.13: Image of the testing data set (same subject across all columns) after learning
on 4 images

Figure 4.14: Boxplot showing the mean absolute differences between the deformed target
image and the actual target image for mutual information, our metric and the ideal case of
unimodal SSD.
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Figure 4.15: Evolution of the increase of the Dice coefficient as a function of the Har-
monic Energy. The solid lines represent the average lines over all the experiments while
the whiskers represent the lowest and highest values.
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(a) T1-MRI source image (b) MRF smoothed image (c) Actual T2-MRI target Image

Figure 4.16: Effect of the MRF smoothing

Figure 4.17: Boxplot showing the mean absolute differences between the deformed target
image and the actual target image for mutual information, our metric and the ideal case of
unimodal SSD.
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Figure 4.18: Evolution of the increase of the Dice coefficient as a function of the Har-
monic Energy. The solid lines represent the average lines over all the experiments while
the whiskers represent the lowest and highest values.
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(a) CT source image (b) Result of the algorithm after
MRF smoothing

(c) Actual attenuation corrected
PET target Image

Figure 4.19: Attempt on PET-CT data set, we would have liked the image in the midll to
look as much as possible like the image on the right, both images have the same intensity
scale.
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Chapter 5

Metric Learning

Interest for Metric Learning (ML) started very recently and can be dated back to 2004.
Furthermore if Manifold Learning techniques are counted as metric learning techniques,
in that case, interest for ML dates back roughly to 1994. The idea of metric learning is
fairly simple: given a data set of training data on which some sort of similarity information
is given, either in the form of a full scalar distance between samples, or a ranking or some
proximity of some samples to others or just a separation between samples that are deemed
similar and dissimilar, metric learning techniques try to find a distance function that re-
produces the relationships given on the training set, and generalizes well on unforeseen
examples.

But before going deeper in the understanding of Metric Learning, we first need to
mathematically define a distance function, and see some of the relaxations that can be
done on this definition.

5.1 Distance Function
Let us consider a non–empty set X , a distance function d on X is a mapping d : X× 7→ R
such that for all x, y, z ∈ X we have:

• symmetry: d(x, y) = d(y, x)

• identity of indiscernibles: d(x, y) = 0⇐⇒ x = y

• triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

from these properties, one has immediately the positivity property: ∀x, y ∈ X , d(x, y) ≥
0, since:

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y)

73
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A non–empty set endowed with a distance function d is called a metric space. A distance
function is a very general function on a manifold. Distance functions can be considered
a ‘generalization’ of the notion of norm for a normed vector space, and indeed, for any
norm ‖ · ‖X , we can define a distance function d such as:

∀x, y ∈ X , d(x, y) = ‖x− y‖X

since in most case we work with normed vector spaces, we will rely heavily on this latter
fact.

5.1.1 Relaxations to the notion of distance
Sometimes, distance functions are too restrictive, and only some of the properties stated
before can be respected. Two relaxations are fairly common:

1. pseudometrics:

• symmetry: d(x, y) = d(y, x)

• semi-separation: d(x, y) = 0=⇒x = y

• triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

2. quasimetrics:

• identity of indiscernibles: d(x, y) = 0⇐⇒ x = y

• triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

In this case, symmetry is just dropped.

5.1.2 Examples of distance functions
By far the most used distance function in computer vision is the euclidean distance on
vector spaces. This distance is of course based on the Euclidean norm denoted here as
L2 norm, or ‖ · ‖2, in the case where the space is of finite dimension, it is not unusual
to refer to the `2 norm, or ‖ · ‖`2 , to specify the summation is finite. In this work, only
finite summations will be considered. The euclidean distance on the vector space X of
dimension N , is expressed as:

∀x,y ∈ X d(x,y) = ‖x− y‖`2 =

√
(x− y)T (x− y) =

√√√√ N∑
i=1

(xi − yi)
2 (5.1)
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Another very well known distance function, that plays a very important role in Metric
Learning is the Mahalanobis distance. In the assumption that all elements of X are
generated from the same distribution, we can reliably estimate the expectation of a random
variable vector X, here the expectation of X is denoted as E [X]. Then the covariance
matrix of X denoted here S, is the element wise variance and covariance matrix of X:

S = E
[
(X− E [X]) (X− E [X])T

]
(5.2)

It has to be noted that S is a positive semi-definite matrix (p.s.d.), which is characterized
by a non-negative spectrum (the set of its eigenvalues). P.S.D matrices can be decomposed
in the product of their square roots meaning that there exists a square matrix R such that:

S = RRT (5.3)

Also if S is positive definite (positive spectrum), then S is invertible and R is also invert-
ible. For the purpose of this work we will assume the covariance matrix to be invertible as
long as the sample size is sufficiently large (at least larger than the dimension of the space).
The case where the matrix is not invertible is a degenerate case where some dimensions
follow Dirac distributions, this is solved numerically (inversion in the image space of the
covariance matrix through singular value decomposition).
The Mahalanobis distance is a reweighting of the euclidean distance in such a way that all
dimensions in the vector space play a role according to the spread of their distribution:

∀x,y ∈ X d(x,y) =

√
(x− y)TS−1 (x− y) (5.4)

This distance is already very useful as is, but using equation (5.3), one can see that the
Mahalanobis distance can be interpreted in terms of the euclidean distance:

√
(x− y)TS−1 (x− y) =

√
(x− y)T (RRT )−1 (x− y) (5.5)

=

√
(x− y)TRT−1R−1 (x− y) (5.6)

=

√
(R−1 (x− y))TR−1 (x− y) (5.7)

=
∥∥R−1x−R−1y

∥∥
`2

(5.8)

This last equation shows that the Mahalanobis distance is just the euclidean distance per-
formed in the transformed space R−1X . In this space, all elements are in a distance that is
proportionate to the spread of their distributions.
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5.1.3 Kernels and RKHS
The notion of distance is way more versatile than the absolute value of a vector in a feature
space [Smola 1998]. It allows to develop methods without knowing the exact representa-
tion of an element in the feature space but only a comparison of that element to other
elements in the feature space. A kernel is such a comparison function, a kernel k is a func-
tion from X × X to R, and a set of n elements {x1, . . . , xn} is represented by the n × n
matrix K, the general element of which is:

Ki,j = k(xi, xj) (5.9)

The kernel k is positive definite on X if and only if kernel matrix K is positive semi
definite for any subset of X . The Aronszajn theorem states that:

Theorem 1. The kernel k is positive definite if and only if there exists a Hilbert space H
and a mapping φ : X 7→ H such that for any x,x′ in X

k(x,x′) = 〈φ(x), φ(x′)〉H (5.10)

Here 〈·, ·〉H is the inner product onH. This theorem is at the source of all kernel meth-
ods, it allows to have access to a possibility infinite feature space H and to the projection
φ without explicitly knowing one or the other, only the kernel expression is needed.

Kernel methods also rely on another important result on the Reproducing Kernel Hilbert
Spaces (RKHS).

Definition 1. The kernel k is called a reproducing kernel ofH if:

1. H contains all functions of the form:

∀x ∈ X , kx : t 7→ k(x, t)

2. for every x ∈ X and f ∈ H:

f(x) = 〈f, kx〉H

If a reproducing kernel exists, thenH is called a Reproducing Kernel Hilbert Space.

A reproducing kernel is unique to a RKHS and conversely. Lastly, we have the result:

Theorem 2. A kernel k is positive definite if and only if it is a reproducing kernel
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Finally, the kernel trick links a kernel to a distance function, considering the previous
results we have:

d(x,y) =

√
‖x− y‖2

H

=

√
‖x‖2

H + ‖y‖2
H − 2〈x,y〉H

=
√
k(x,x) + k(y,y)− 2k(x,y) (5.11)

Examples of positive definite kernels: some kernels are very widely used since they
can introduce a lot of non-linearity and are very easy to implement, among those two
stand out:

1. For any p ∈ N the polynomial kernel is positive definite:

k(x,y) = 〈x,y〉p (5.12)

where 〈·, ·〉 is the euclidean inner product.

2. The Gaussian radial basis function, also known as the Gaussian kernel is positive
definite:

k(x,y) = exp

(
−‖x− y‖2

2σ2

)
(5.13)

5.2 Metric Learning and Space Embedding
As we saw earlier, be it with the Mahalanobis distance or with kernel derived distances,
metric learning and space embedding are intrinsically linked. Defining and learning a
metric amounts in most cases to learn a projection into a new space where the elements
have the desired similarity properties. Two main approaches can be distinguished in the
literature. Unsupervised learning approaches where there is no more information given
to us than the training samples, which are often represented as a set of feature vectors
{x1, . . . ,xN} ⊂ X . This is opposed to Supervised learning approaches, where the sam-
pled training data is enriched with information given by the user, this information can
come in the form of labels in the cases of classification where given a set of samples and
their classes one tries to recover the class of a new sample, in this case, the training set is
of the form {(xi, `i)|i ∈ {1, . . . , N}} ⊂ X ×N. But in the specific case of metric learning,



78 CHAPTER 5. METRIC LEARNING

data can also come with similarity information, and for instance we are given two sets of
pairs of samples, the dissimilar and the similar pairs. This information is given by the user
before training and the role of the algorithm is to identify the structure of similarity and
given two new samples be able to identify them as similar or dissimilar. Supervised learn-
ing refers to all the algorithms where on top of the data there is a user defined structure
that the algorithms tries to identify and recreate.

A good, but rather outdated survey on Metric Learning can be found in [Yang 2006].
Let us now review some fundamental and state of the art Metric Learning algorithms and
space embedding algorithms.

5.2.1 Unsupervised Learning

As we have seen from equation (5.5), Metric Learning and space embedding are closely
linked, since learning a metric in turn might just amount to finding an embedding space in
which the properties we are interested in are projected. Unsupervised learning for metric
learning is the most primitive form of learning since we can’t impose information con-
straints on the learned space, but this set of techniques come in handy when this supple-
mentary information is too costly to produce or that only recovering the intrinsic structure
of the space might suffice. This discipline is named Manifold Learning and an extensive
literature describes it. Manifold Learning techniques all revolve around the central idea
that the data in the highly dimensional space X is in actuality laying on a much lower
dimension manifold, which theses techniques try to recover. This idea is traditionally
represented with the "Swiss roll" exemplar problem, as illustrated in figure (5.1): in this
example the data is embedded in a 3D space, yet obviously is supported by a 2D manifold
which is this seemingly rolled sheet of paper, the ‘Swiss roll’. If we try to compare two
points in the 3D space using the euclidean distance, two points that are completely differ-
ent due to the inherent structure of the roll might appear very close. Manifold Learning
techniques are used to unroll the manifold and embed it in its true space. In this space, the
euclidean distance should be a good approximate of the inherent structured distance of the
data.

It is out of the scope of this thesis to fully describe the extent of Manifold Learning,
instead we are going to describe the most popular Manifold Learning algorithms and give
an intuition as to how they can be used in the same way as metric learning techniques.

Multi–Dimensional Scaling (MDS) [Cox 2001] is one of the first successful manifold
embedding algorithms. The main idea of MDS is to only rely on the inner distances of
the training set, thus removing all considerations on the samples themselves. MDS finds
the embedding with the lowest dimension that maps the samples all while keeping their
relative distances. In theory, if the original embedding is of dimension M , then a distance
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converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Figure 5.1: Figure extracted from [Tenenbaum 2000]: Left: Manifold distance compared
to euclidean distance, Middle: Geodesic distance as used by ISOMAP, Right: unrolling of
the ‘Swiss roll’ and both Manifold distance and geodesic distances compared.

preserving embedding is of maximum dimension M − 1. Such a space reduction is not
enough in practice, so irrelevant dimensions to the distance are discarded. In [Cox 2001],
Cox et al. show how to go from a matrix of distances to a matrix of inner products between
points of the embedding, to finally the positions of the actual points in the embedding, up to
some isomorphic (that doesn’t operate on distances) transformations. Then a development
is made to handle discrepancy matrices, which are matrices of user defined distances. Let
us have a look at how this is done:

1. start with a matrix D = {Dij} of the inner–sample discrepancies.

2. Compute the intermediate matrix A = {Aij} = {−1

2
D2
ij}

3. Find the matrix of inner-products B = {Bij} = {Aij +
1

N

∑
i

Aij +
1

N

∑
i

Aij +

1

N2

∑
ij

Aij}

4. Find the eigenvalues λ1, . . . , λN−1 and associated eigenvectors v1, . . . ,vN−1 and
∀i,vi

Tvi = λi. Eigenvalues are in a descending order.

5. Choose an appropriate number of dimensions p, and the coordinates of the points
are given by vij, i ∈ 1, . . . , p; j ∈ 1, . . . , N

One has to note that if D is a matrix of distances, then MDS is very close to PCA.
Isomap [Tenenbaum 2000]is one of the first non-linear manifold learning techniques

able to deal with the swiss roll problem (figure 5.1). The idea of Isomap is to extend on
MDS, by using geodesic distances extracted in the original space.
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The algorithm works in 3 steps:

1. Using K-nearest neighbors, an adjacency graph is constructed, in which the weight
of the edges is dX (xi,xj) (the euclidean distance) if i and j are neighbors, and
infinity if they are not.

2. To find the geodesic distances dH(xi,xj), shortest paths are computed: initialize

∀i, j, dH(xi,xj) = dX (xi,xj)

Then ∀i, j and each value of k in 1, . . . , N set

dH(xi,xj) = min (dH(xi,xj), dH(xi,xk) + dH(xk,xj))

3. Use MDS with the matrix D = {Dij} = {dH(xi,xj)}

As with any non-linear algorithm, there is the introduction of a non-linearity parameter,
here it is the K of KNN. The setting of K can be crucial in finding the right embedding,
as setting K too small might lead to over–fitting of the manifold noise, and setting K too
large might not get as close to the true geodesic distance on the manifold.

Locally linear embedding (LLE) [Roweis 2000] finds an embedding that focuses on
the local structure in the manifold. The construction is done in such a way that only
geometrical properties of the manifold are kept, so the final embedding mimics the local
geometric relationship between samples.

First, for each sample xi ∈ X of dimension d, k neighboring samples are selected
constitutingNi, the projection of xi onto the new space will only rely on these k neighbors.
Then a weighting parameter is learned such that the geometric interactions of xi with its
neighbors are preserved. This is done by minimizing the following cost:

min
W

∑
i

(
xi −

∑
j∈Ni

Wijxj

)2

(5.14)

s.t.
∑
j∈Ni

Wij = 1

The weight Wij characterizes the contribution of the j thsample to the reconstruction of
xi. By design W is rotation and scale invariant, and the sum to 1 constraint makes W
translation invariant. In this way, W only captures intrinsic geometric properties of the
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local embedding. Reconstruction of the new embedding is done in the same way, the new
set of vectors hi ∈ H of dimension m� d is found by minimizing the functional:

min
H

∑
i

(
hi −

∑
j∈Ni

Wijhj

)2

(5.15)

s.t.


1

N

∑
i

hih
T
i = I∑

i

hi = 0

Where I is the identity matrix. The first constraint prevents from having degenerate repre-
sentation while the second constraint prevents translations around the embedding centroid.
Note here that by setting Wij = 0 when j /∈ Ni, then we can define the d× d matrix W of
general element Wij , and we have

∑
i

(
xi −

∑
j∈Ni

Wijxj

)2

=
∑
i

(
xTi (I −W )T (I −W )xi

)2

(5.16)

=
∑
i

‖xi‖2
(I−W )T (I−W )

(5.17)

With equation (5.16), we can see that findingW is effectively minimizing the Mahalanobis
weighted norm of the samples and effectively leads to a Mahalanobis weighted distance
between the samples in the learned space.

Laplacian Eigenmaps [Belkin 2003] is another manifold learning technique, that fo-
cuses on local interactions just like LLE. The use of the Laplace-Beltrami opreator and the
heat kernel allows to smooth out irregularities and noise in the manifold which leads to a
smoother and more consistent embedding. Laplacian eigenmaps, first build an adjacency
graph, weighted by heat kernels and the embedding is computed using the Laplacian-
Beltrami operator:

1. Construct the adjacency graph using K-nearest neighbors by putting an edge be-
tween sample i and sample j if i and j are neighbors.
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2. Choose the weighting of the graph, either soft weighting: Wij = exp

(
−‖xi − xj‖2

σ

)
if i and j are connected

Wij = 0 otherwise

or hard weighting: {
Wij = 1 if i and j are connected
Wij = 0 otherwise

3. Have D = {Dii} = {
∑

jWji} the diagonal matrix of weights, and L = D −
W , the laplacian matrix, and compute the eigenvalues λi and eigenvectors vi to
the generalized eigenvector problem, sorted in ascending order according to their
eignevalues:

Lv = λDv

v0 is dropped since linked to eigenvalue 0, the next r values are kept for an embed-
ding in r dimensions. The representer hi of xi in the new space is the vector:

hi = (v1(i), . . . ,vm(i))

It can be shown that this embedding minimizes the objective function:∑
ij

‖hi − hj‖2Wij (5.18)

under appropriate constraints. This objective function penalizes neighboring points that
are mapped far apart in the embedding according to their weight W .

The missing link of all the Manifold Learning methods with metric learning, is the
ability to reproduce the result on unforeseen examples. This is called the out-of-sample
problem or how to project a new point onto the already existing embedding. In the general
case, this is an open problem, but some manifold learning techniques have been provided
with out-of-sample extensions. And this is the case for all the manifold learning algo-
rithms presented here. In [Bengio 2004] Bengio et al. provide an out-of-sample extension
for LLE, ISOMAP, MDS, eigenmaps and spectral clustering, by first acknowledging a
common framework to the methods and then devising a weighting function used to map
new points in the embedding.

Relevant components analysis (RCA) [Shental 2006]is interesting because it is one of
the works that sits in between Unsupervised and Supervised learning, it is referred to by the
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Figure 5.2: Figure extracted from [Shental 2006]

authors as Adjustment Learning. Adjustment learning is mainly targeted at classification.
The main idea is that the only information we have on the data set is that it is organized
in chunks or chunklets of data, in which all elements have the same unknown label (see
figure 5.2). A chunklet may contain only one element.

Considering we have M chunklets, and Pm, m ∈ 1, . . . ,M samples per chunklet, the
mean sample over each chunklet is represented by µ̂m, m ∈ 1, . . . ,M and a sample from
chunklet m is represented by xim, i ∈ 1, . . . , Pm then RCA is defined as follows:

1. Compute Sch:

Sch =
1

|Ω|

M∑
m=1

Pm∑
i=1

(
xim − µ̂m

) (
xim − µ̂m

)T
and find r the number of singular values of Sch that are significantly larger than 0.

2. Compute ST the total covariance matrix of the original data and project the data
using PCA to its r largest dimensions.

3. Project Sch onto the reduced dimensional space, and compute the corresponding
whitening transformation R as the square root matrix of Sch

4. Apply R to the original data in the reduced space

This transformation magnifies the directions that are relevant to each chunklet, while
masking inner-chunklet variability. PCA is done to not magnify directions that have no
spread. A kernelized version of RCA was proposed in [Tsang 2005]. Later in [Bar-Hillel 2003,
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Bar-Hillel 2006] it has been shown that a full fledged metric can be devised by first do-
ing Fisher Discriminant Analysis in the original space followed by RCA in the reduced
space, metric which maximizes the mutual information between the original data and its
representation in the embedding.

5.2.2 Supervised Learning
Supervised learning is the best setting for metric learning. Given a sample data set, and
some similarity information on the samples, we are aiming to learn a distance function that
reproduces this sense of similarity on unforeseen samples. The information of similarity
can be given in various ways we will see. A very popular way of expressing the similarity
is by considering two sets of pairs:

S = {(xi, xj) ∈ X 2, (i, j) ∈ {1, . . . , N} s.t. xi is semantically close to xj}

and

D = {(xi, xj) ∈ X 2, (i, j) ∈ {1, . . . , N} s.t. xi is semantically distant from xj}

S and D are user defined. The first successfull attempt at solving this problem was made
in [Xing 2002], where the learning of a Mahalanobis–like distance is made:

d(x,y) = ‖xi − xj‖A =

√
(x− y)TA (x− y) (5.19)

The notion of distance is relaxed here to a pseudo–metric as the matrix A is only required
to be positive semi–definite. Matrix A is found by minimizing the following problem:

min
A

∑
(xi,xj)∈S

‖xi − xj‖2
A (5.20)

s.t.


∑

(xi,xj)∈D

‖xi − xj‖A ≥ 1

A p.s.d.

Matrix A is found such that the Mahalanobis distance between the similar pairs is as small
as possible while the the distance between dissimilar pairs is maintained reasonably large.
The arbitrary constant 1 can be changed but only resulting in a scaling of the matrix. The
problem is obviously convex and the constrains are also convex. The resolution of this
problem is done iteratively in two steps, first the matrix is found by gradient descent, then
projection is done on the two constrain sets.
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A kernelized version of this method has been presented in [Kwok 2003], where x
and y are first projected in feature spaces, allowing for non-linearity in the metric, the
optimization method is also revized with the use of linear programming with the objective
of circumventing the problem of local minima that can arise from gradient descent.

More recently, Goldberger et al. proposed Neighbourhood Component Analysis (NCA)
[Goldberger 2004]. Even though NCA was originally designed for k-nearest neighbor
classification (KNN), NCA was used successfully in other applications [Wang 2008, Keller 2006]
and even in an unsupervised setting [Yuan 2007]. Given a training set of labeled data
Sl = {(x1, `1), . . . , (xN , `N) ∈ X × {C1, . . . , CK}}, where {C1, . . . , CK} are the K
different classes, NCA learns a Mahalanobis–like distance weighted by matrix A = QTQ
that optimizes the leave one out performance of KNN on the training data. Neighbourhood
assignment in this case is made differentiable with a soft-max activation function:

pAij =
exp

(
−‖Qxi −Qxj‖2)∑

k 6=i

exp
(
−‖Qxi −Qxk‖2)

pAii = 0

(5.21)

Maximizing the leave-one-out performance of KNN under soft-max is the same as maxi-
mizing the expected number of points correctly classified under soft-max, as a function of
Q:

f(Q) =
∑
i

∑
j∈Ci

pAi,j (5.22)

In practice, f is maximized using a gradient based optimizer. Which is again sensitive to
local minima and initialization.

Following the work of [Goldberger 2004] on NCA, Globerson and Roweis show a
convex alternative to this method [Globerson 2006] with Maximally Collapsing Metric
Learning (MCML). The whole idea of MCML is that in the same class, samples should be
mapped infinitely close to each other by the distance and in between classes, as far away as
possible. This is done by minimizing the Kullback-Leibler distance between pAij of NCA
and a p0

ij defined as:

p0
ij =

{
1 xi = xj
0 xi 6= xj

(5.23)

The objective function we try to minimize is then:
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min
A

DKL

(
pAij
∥∥p0

ij

)
(5.24)

s.t. A p.s.d.

This function is convex in A with convex constraint, so the minimization converges to a
global optimum. Here optimization is done with gradient based optimizer followed by
projection on the space of P.S.D. matrices.

Scalability The main shortcoming of the previously mentioned algorithms stems from
the fact that the computational complexity grows quadratically with the number of samples
which becomes intractable very quickly. Also the estimation of the eigenvector problems
linked to the projection on the space of p.s.d matrices is of cubic complexity with respect to
the dimension of the space. These two major problems introduce the search for algorithms
that are scalable to the number of data and their dimensions.

One of the first algorithm to deal with scalability is Similarty Sensitive Hashing (SSH)
[Shakhnarovich 2005, Ren 2005]. SSH finds a mapping H : X → H such that the L1

distance between samples in H reflects a user defined similarity that is given in the form
of labels given to pairs of samples. Pairs of samples in S are given label 1 and pairs of
samples in D are given label −1. H is defined as a Hamming space, i.e. a space of binary
vectors, here, the vectors are considered weighted by a parameter vector α:

H(x) = [α1h1(x), . . . , αMhM(x)] (5.25)

With the projection function h defined as a threshold function. Here we will only display
the case were h is a linear projection function of x, with matrix R, and Rm a row vector
of R:

hm(x) =

{
1 if RT

mx ≤ 0
0 if RT

mx ≥ 0
(5.26)

A weak classifier can then be written as:

cm(xi,xj) =

{
1 if h(xi) = h(xj)
0 otherwise (5.27)

= sign
(
RT
mxi
)
sign

(
RT
mxj

)
We then have the identity:
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‖H(xi)−H(xj)‖`1 =
M∑
m=1

αm |hm(xi)− hm(xj)|

=
M

2
− 1

2

M∑
m=1

αmcm(xi,xj) (5.28)

this last equation made the strong classifier appear:

C(xi,xj) = sign

(
M∑
m=1

αmcm(xi,xj)

)
(5.29)

The optimization strategy onC follows the boosting approach [Schapire 1999a, Collins 2002].
At each iteration, optimization on a new cm is done that maximizes the correlation between
labels and prediction. Then the misclassified samples are boosted with a weight to have
more effect on the optimization of cm at the next iteration. The αm are also computed
by optimization in the boosting procedure. Boosting is known to be scalable for a large
number of samples and has been shown to have excellent generalization performance,
without a tendency to over-fitting. However, boosting is very sensitive to label noise, and
the overall metric isn’t differentiable due to the use of the L1 distance.

One of the first Mahalanobis-like distances that takes into account the scalability is
Information Theoretic Metric Learning (ITML) [Davis 2007] in which the distance is in-
terpreted in terms of the Gaussian distribution of mean µ that generates it:

p(x;A) =
1

Z
exp

(
−1

2
‖x− µ‖2

A

)
(5.30)

Given this, they propose to find the matrix A yielding a distribution as close as the one
given by a chosen matrix A0 (e.g. A0 = I for a distance as close as possible to the
euclidean distance) under the constraints of separation of S and D. This is done with the
use of the Kullback-Liebler divergence with the optimization of the problem:

min
A

DKL

(
p(x;A)

∥∥p(x;A0)
)

(5.31)

s.t.

 ‖xi − xj‖2
A ≤ u (i, j) ∈ S

‖xi − xj‖2
A ≥ v (i, j) ∈ D

In order to ensure that the solution always exists, slack variables are introduced. The
optimization method repeatedly computes projections of the current solution onto a single
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constraint with an update on the matrix A. The complexity of the algorithm is in O(cd2)
where c is the number of constraints and d the dimensionality of the space X .

Large Margin Methods One of the major shortcomings of the distance metric learning
method thus far is their lack of robustness to label and sample noise. However real life
cases always display sample and label noise, be it because the operator mislabeled a sam-
ple or because the sample itself is subject to measurement noise. Large Margin Methods
(LMM) for metric learning are an attempt to deal with the latter problem. The idea behind
large margin methods is to put as much distance as possible between the samples and the
decision frontier, this distance is called the margin. If a new sample is corrupted by noise,
then chances are that it still falls on the right side of the decision frontier since it is suppos-
edly closer to similar samples. LMM have proven to be more successful and more robust
to noise than their counterparts

One of the first Large Margin Metric Learning algorithm was presented in [Weinberger 2006,
Weinberger 2009] with Large Margin Nearest Neighbor (LMNN) classification. This al-
gorithm was originally designed for K-Nearest Neighbor classification. LMNN finds a
mapping and a Mahalanobis distance function such that the nearest neighbors of a sample
xi are effectively its target neighbors, identified by the fact that they have same label. The
idea of LMNN is to establish a perimeter around each sample in which there are no impos-
tors, i.e. no samples should be of different class in this perimeter. Even more, the distance
between impostors and the perimeter (the margin) should be maintained large. During
learning, the impostors are pushed out of the perimeter with sufficient margin, while target
neighbors are pulled in the perimeter:

min
A

(1− λ)
∑

i,j∈N (i)

‖xi − xj‖A︸ ︷︷ ︸
pull

+λ
∑

i,j∈N (i)

∑
k

(1− δ`i=`k) max
(
1 + ‖xi − xj‖A − ‖xi − xk‖A , 0

)
︸ ︷︷ ︸

push

(5.32)

max(x, 0) is the standard hinge loss function, if the discrepancy between distances in the
class and out of the class is smaller than one then the push term is active, otherwise it gets
inactivated, this is how the margin is enforced. The choice of a unit margin, is merely a
convention as choosing another value would only scaleA. This problem is again expressed
into a constrained problem (A p.s.d. is of course one of the constraints) with slack variables
and solved with sub–gradient descent and projections on the constraint spaces.



5.2. METRIC LEARNING AND SPACE EMBEDDING 89

In [Torresani 2007] an extension to LMNN is proposed, Large Margin Component
Analysis (LMCA), in which dimension reduction is also carried out and the minimization
of equation (5.32) is done on a rectangle matrix R of dimension r × d where d is the di-
mension of the space X and r is the maximum rank of the resulting matrix A = RTR.
This constrain on the rank of A constitutes the dimension reduction, and the optimiza-
tion is done directly by gradient descent on the space of matrices. Using this method,
kernelization of the method is possible and presented in the paper.

Since LMNN, large margin metric learning methods have gained a lot of attention.
Recently [Shen 2009, Shen 2012], was proposed a take on large margin metric learning
with the use of boosting like methods, thus alleviating the problems of scalability. Training
triplets {(xr,x+

r ,x
−
r )}r are considered, such that d(xr,x

+
r ) < d(xr,x

−
r ) for all r and they

are associated with the margin:

µr =
∥∥xr − x−r

∥∥2

A
−
∥∥xr − x−r

∥∥2

A

= (xr − x−r )TA(xr − x−r )− (xr − x+
r )TA(xr − x+

r )

= tr{BT
r A} = 〈Br, A〉 (5.33)

where Br = (xr − x−r )(xr − x−r )T − (xr − x+
r )(xr − x+

r )T and 〈·, ·〉 denotes the standard
inner product on the space of matrices. The margin µr quantifies how well the projection
R (or, equivalently, the positive semi-definite matrix matrix A) separates the positive pair
from the negative pair in training sample r. Then the following log-exponential cost is
minimized:

min
A

log

(∑
r

exp (−µr)

)
+ ε tr{A} (5.34)

s.t.

{
µr = 〈Br, A〉

A p.s.d.

ε is a small positive parameter used to avoid arbitrary scaling of A. The trace norm term
involving it further promotes low-rank solutions, which adds a dimensionality reduction
flavor to the approach. The major innovation of the method is to use an observation made
in [Shen 2008], that any positive semi-definite matrix can be decomposed into a linear
positive combination of trace-one rank one matrices. Use of this fact is made in a boosting
approach in which a single row of the projection matrix R is added at each iteration. With
A expressed as:
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A =
∑
j

ωjξjξ
T
j (5.35)

with ωj ≥ 0 and‖ξj‖ = 1. Now the minimization problem can be rewritten:

min
ω,ξ

log

(∑
r

exp (−µr)

)
+ ε

∑
j

ωj (5.36)

s.t.


µr =

∑
j

ωjξ
T
j Brξj

ωj ≥ 0
‖ξj‖ = 1

Minimization over ω and ξ is performed using a procedure similar to Adaboost classifica-
tion that treats ξTj Brξj as a weak learner and increases the influence of training samples
Br violating the constraints the most.

Online Metric Learning Another strand of metric learning techniques developed along-
side, the previously discussed methods, the online metric learning methods. Like all online
methods, online metric learning methods learn their parameters and get better adjusted to
the task as they are fed with samples. Formally, online metric learning methods start with
a set of initial parameters and are given a new pair of samples (x1,x

′
1) ∈ X 2 and make

a prediction on their similarity. At iteration 2 the label `1 corresponding to iteration 1 is
given, along side a new pair (x2,x

′
2) to make prediction on. The actualization of the pa-

rameters will take into account the discrepancy between the last prediction and the ground
truth given by the label, and then make a new prediction.

One of the first method to attract attention was Pseudo-metric Online Learning Al-
gorithm (POLA) [Shalev-Shwartz 2004], in which a mahalanobis-like pseudo metric is
learned, and at each iteration, the hinge loss over all the previously seen samples is mini-
mized:

Lt(A, b) = max
{

0, `t

(
‖xt − x′t‖

2
A − b

)
+ 1
}

(5.37)

At each iteration, two parameters are modified, the matrix A and the threshold parameter
b. When the Mahalanobis distance between two samples goes over b they are considered
dissimilar.
With each new sample pair, A and b are projected onto two sets, first the set of permissible
solutions:



5.2. METRIC LEARNING AND SPACE EMBEDDING 91

Ct = {(A, b) s.t. Lt(A, b) = 0} (5.38)

and then onto the set of constraints:

Cc = {(A, b) s.t. A p.s.d, b ≥ 1} (5.39)

projection on the space of p.s.d. matrices is achieved through eigenvector decomposition
such as in [Xing 2002]. The problem of such a decomposition is that it is computationally
expensive which is a drawback when considering online methods that should be designed
for near real-time performances.

In [Davis 2007] an online version of ITML was also presented, this version doesn’t
require the eigenvector decomposition to be made, but still presents quite costful com-
putations. This problem was recently addressed in [Jain 2008], where the update on the
Mahalanobis matrix is completely made by a gradient descent step, the algorithm is re-
ferred to as LogDet Exact Gradient Online (LEGO). The loss function considered at each
iteration is:

Lt(A) =
1

2

(
‖xt − x′t‖

2
A − yt

)2

(5.40)

where yt is the groundtruth value of the measurement on ‖xt − x′t‖
2
A. Then following

[Davis 2007], the update rule on A follows:

At+1 = argmin
A p.s.d.

{DKL (p(xt;A) ‖p(xt;At)) + λLt(A)} (5.41)

Careful derivation of the previous cost leads to the gradient update on A, it is shown that
with iterations A will keep p.s.d. and bounds on the error are given.

Recently, a new approach to online metric learning gained a lot of attention. The ap-
proach named Online Algorithm for Scalable Image Similarity learning (OASIS) [Chechik 2009,
Chechik 2010] iterestingly steps back from the Mahalanobis distance learning approach
and learns a simillarity SW that is a simple bilinear form:

SW (xi,xj) = xTi Wxj (5.42)

at each iterations, a triplet of samples inX is considered such that SW (xi,x
+
i ) > SW (xi,x

−
i ),

this is enforced by the margin equation:

SW (xi,x
+
i ) > SW (xi,x

−
i ) + 1 ∀xi,x+

i ,x
−
i ∈ X (5.43)

The update equation is following the Passive-Aggressive algorithm:
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Wi = argmin
W

1

2

∥∥W −W i−1
∥∥2

F
+ Cξ (5.44)

s.t.

{
lw = max(0, 1− Sw(xi,x

+
i ) + Sw(xi,x

−
i ) ≤ ξ

ξ ≥ 0

Where ‖·‖F is the Froebenius norm of the matrix (the sum of all the squared elements)
this is solved by a simple gradient descent like update:

Wi = Wi−1 + λ
∂lW
∂W

(5.45)

λ = min

C,
lW∥∥∥∥∂lW∂W
∥∥∥∥2

 (5.46)

C is the trad-off at each iterations between how close the new matrix is to the previous
one and the respect of the new constraint. The Whole algorithm is very fast and scal-
able. In the resolution, sparcity of the elements of X is taken into account to augment the
computationla efficiency.

The similarity matrix W learned by OASIS is not guaranteed to be positive or sym-
metric. And this might be an advantage to some applications that are known to be non-
symmetric, such as the demonstrated ranking of images by semantic relevance to a given
image query. However, variants of the algorithm are proposed where the Mahalanobis
distance is considered, then the approach resembles online LMNN, in this case, projection
onto the space of p.s.d matrices is done. This is shown to reduce overfitting, however the
performance of the algorithm is shown to decrease due to the fact that the Null space of
the matrix is hard to determine numerically (when the projection on the space of p.s.d.
matrices is done) when there is noise in the samples.

5.3 Multi-Modal Metric Learning
Multi-modal metric learing builds onto the unimodal cases that were described earlier in
this chapter. Instead of dealing with samples from X and trying to find the best suited
metric on X we are now faced with elements from X ⊂ Rd1 and Y ⊂ Rd2 , with d1
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usually different from d2, two different spaces with elements possibly completely different
in nature and try to find a metric on the product space X × Y . This metric will be learned
on a training set representing the similarity on the spaces that we want to learn. This will
usually present itself as a set of labeled pairs, with pairs given a label 1 if similar and −1
if dissimilar, or even a more general sense of similarity with triplets with a sample from
X and two samples from Y with the requirement that one is semantically closer to the
element in X than the other.

We can see that this problem is much harder than the usual metric learning problem,
because here we don’t have any natural metric on the product space X × Y , which we
could then modify as is the case with Mahalanobis type metrics in the unimodal case.

However we will see that some unimodal problems can be modified to account for
multi-modality, or even that a wide range of unimodal algorithms can be adapted to the
multi-modal case.

5.4 Cross-Modality Sililarity Sensitive Hashing

The first idea for metric learning in this chapter is to find a common embedding space
H ⊂ Rd for metric learning. This is depicted in figure 5.3, we want to learn two projection
functions f : X → H and g : Y → H, such that elements of X and Y labeled as similar
end up close, in the L1 measure sense,in the common embedding spaceH, while dissimilar
elements end up as far away as possible in the embedding. Then given two new samples
from X and Y , the distance is computed with the application of the projection functions
followed by the distance computation in the embedding space.

Using the work of [Shakhnarovich 2005, Ren 2005] for unimodal metrics, we show
here how we can extend it to the multimodal case. This work has been presented in
[Bronstein 2010] and an application to 3D images and Gabor features embedding was
presented in [Michel 2011].

5.4.1 Extension on Similarity sensitive Hashing

Let us consider x ∈ X ⊆ Rd1 and y ∈ X ⊆ Rd2 with d1 6= d2. The M -dimensional
Hamming embedding for each image space can be thought as binary vectors ξ(x) and
η(y) with

ξ(x) =

 ξ1(x)
...

ξM(x)

 and η(y) =

 η1(y)
...

ηM(y)

 (5.47)
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we model ξm(x) and ηm(y) such that

ξm(x) =

{
0 if fm(x) ≤ 0
1 otherwise and ηm(y) =

{
0 if gm(y) ≤ 0
1 otherwise

(5.48)
where fm and gm are the components of the vector functions f and g, we assume here that
f and g are linear projections and so we have:

fm(x) = pTmx + am and gm(y) = qTmy + bm (5.49)

The `1 distance on the Hamming space defines the Hamming distance denoted dH:

dH (ξ(x), η(y)) = ‖ξ(x)− η(y)‖`1 (5.50)

dH (ξ(x), η(y)) =
M∑
m=1

|ξm(x)− ηm(y)| (5.51)

Now for each dimension m, we can define a weak binary classifier:

cm(x,y) =

{
1 if ξm(x) = ηm(y)
−1 otherwise

= (2ξm(x)− 1) (2ηm(y)− 1)

= sgn (fm(x)) sgn (gm(y))

= sgn
(
pTmx + am

)
sgn

(
qTmy + bm

)
(5.52)

We can also rewrite dH:

dH (ξ(x), η(y)) =
M

2
− 1

2

M∑
m=1

cm(x,y) (5.53)

Now if we define the Similarity Classifier C:

C(x,y) = sgn

(
M∑
m=1

cm(x,y)

)
(5.54)

then dH is small for C(x,y) = +1 and large for C(x,y) = −1 with high probability.
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Resolution with AdaBoost We find the parameters of the projection functions, using
Adaboost [Freund 1995] to solve the classification problem. Let us assume we are working
with N sample pairs {(xi,yi) ∈ X × Y}i∈{1,...,N} associated with N classification labels
(`(i))i∈{1,...,N}

Following the Adaboost update rule, we have the weighted correlation of labels with
prediction:

rm =
N∑
i=1

Wm(i)`(i)cm(xi,yi)

=
N∑
i=1

Wm(i)`(i)sgn
(
pTmx + am

)
sgn

(
qTmy + bm

) (5.55)

A reasonable objective of the weak learner at iteration m is to maximize rm Our boosted
cross-modality similarity learning algorithm can be summarized as follows:

Algorithm 5.1 Boosted cross-modal similarity-sensitive embedding
Require: K pairs (xk, yk) labeled by sk = s(xk, yk)

{Initialize weights} w1k = 1/K
for i = 1 to n do

Select ξi and ηi such that ci in (5.52) maximizes:

ri =
K∑
k=1

Wi(k)`(k)ci(xk, yk). (5.56)

Set αi = 1
2

log(1 + ri)− 1
2

log(1− ri).
Update weights according to

wi+1,k = Wi(k)e−αi`(k)ci(xk,yk) (5.57)

and normalize by sum.
end for
return maps ξi : X → {0, 1} and ηi : Y → {0, 1}, and scalars αi, i = 1, . . . , n.

The algorithm follows very much the standard AdaBoost procedure. It consists of
two steps, where first the maximization of the weighted correlation ri of labels with the
outputs of the weak classifier is addressed. This step is followed by the selection of αi
that minimizes the exponential loss [Freund 1995]. In case the unweighted version of the
Hamming metric is used, s skipped, fixing αi = 1.
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Projection selection Details of projection selection specific to our cross-modality simi-
larity learning problem are concentrated in the first step.

Substituting the affine projections fi and gi into (5.56), we obtain

ri =
K∑
k=1

Wi(k)`(k)sign (pT
i xk + ai)sign (qT

i yk + bi). (5.58)

Maximizing ri with respect to the projection parameters is difficult because of the sign
function. However, this maximizer is closely related to the maximizer of a simpler func-
tion,

r̂i =
K∑
k=1

vk(p
T
i xk)(q

T
i yk), (5.59)

where xk and yk are xk and yk centered by their weighted means, and vk = Wi(k)sk.
Rewriting the above yields

r̂i = pT
i

(
K∑
k=1

vkxky
T
k

)
qi = pT

i Cqi, (5.60)

where C can be thought of as the difference between weighted covariance matrices of
positive and negative pairs of the training data points.

Unit projection directions pi and qi maximizing r̂i correspond, respectively, to the
largest left and right singular vectors of C. In practice, since the minimizers of r̂i and
ri are not identical, we project xk and yk onto the subspaces spanned by M largest left and
right singular vectors. Selecting M � m,m′ allows to greatly reduce the search space
complexity. In our experiments, M was empirically set to 5; further increase of M did not
bring significant improvement.

In order to find the best projection directions pi and qi in the two reducedM -dimensional
search spaces, the following concept was used: N pairs of M -dimensional random vec-
tors are generated. Each such pair forms a candidate for the pair of projection directions pi
and qi; for each candidate, we project the training data points obtaining two sets of scalars
x′k = pT

i xk and y′k = qT
i yk. Next, we search for the scalar parameters ai and bi maximizing

ri. For that purpose, for every pair of scalars (a, b), we define the cumulative sum

S(a, b) =
K∑
k=1

1(x′k + a ≤ 0)1(y′k + b ≤ 0)vk, (5.61)

where 1 denotes an indicator function. In this notation, ri can be expressed as ri(a, b) =
4S(a, b) + S(−∞,−∞) − 2S(a,−∞) − 2S(−∞, b). In order to find (a, b) maximizing
ri, we quantize the space of candidate pairs (a, b) on a grid of B × B bins and evaluate
S(a, b) and, hence, ri(a, b) in each bin.
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5.4.2 Similarity Map Experiment

For our experiments, we used the MR brain images of ten patients. For each patient,
perfectly co-registered T1-, T2-weighted and Proton-Density (PD) images were available.
Four pairs of images were used for training; the rest was used for testing. The training
dataset was designed using the groundtruth correspondence between the multi-modal im-
ages: feature vectors at corresponding location in two different modalities were considered
similar, while two feature vectors extracted at a location distant 14 to 16 pixels from the
groundtruth correspondence location were considered dissimilar. For the training set, we
randomly picked features vectors in the four image pairs, with |P| = 20 × 103 positive
and |N | = 200× 103 negative pairs.

To visually assess the validity of the learned measure, we plot the learned metric from
a point in the image in one modality to all the points in the image in second modality in
Figure 5.4 (since the data are 3D, two 2D slices are shown). It is interesting to observe that
for some very distinctive points in the image, the distance is close to 0 in a very limited
area around the point position (first row of Figure 5.4), while in less distinctive image
areas, the distance profile is more shallow around the point. We can note that the size of
the valley around the point of interest in the latter case is around 15 voxels in radius, which
is consistent with the training set creation.

5.5 Maximum-Margin Cross-Modal Metric Learning
Cross-Modality Similarity Sensitive Hashing was one of the first method to bring metric
learning to the multi-modal case. Its formulation allows for very fast computation of the
distance thanks to the hamming space embedding which allows to make comparison of
feature vectors through their representation in the Hamming space which thus consists in
the comparison of binary vectors.

However this practicality comes with a cost, namely using sign functions in the expres-
sion of the distance prevents us from having a differentiable measure. Unfortunately as we
have seen in Chapter 2, many registration methods need a differentiable cost to perform
the optimization on the transformation. We thus would like to have access to a learned
distance metric that is based on a L2 distance.

A second problem of the previous method is that it is based on the well known al-
gorithm AdaBoost. Even though the usage of AdaBoost makes the computation of the
projection functions very efficient, it is well known that AdaBoost is very sensitive to la-
bel noise as shown in [Dietterich 2000]. Lately, the usage of Maximum Margin methods
in learning has become very popular, and metric learning is no exception as we have seen
in section 5.2.2. Maximum Margin methods aim at maximizing the distance (the margin)
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between the decision boundary and the training samples. This is usually done with the
usage of slack variables that allow some samples in the training set to fall within margin
and thus renders the problem feasible. Maximizing the distance between the samples and
the decision boundary allows for a larger security on the testing set, and prevents the al-
gorithm from the sensitivity to the label noise. Like in support vector classification, this
improves the generalization properties of the metric and constitutes a provably powerful
mechanism against overfitting.

In this section we are going to explore a new paradigm for cross-modal metric learning.
Instead of learning at the same time the new embedding and the metric in this space,
we take a two-step approach in which we first embed both feature spaces in the same
space, then learn the embedding in this space. This approach has an obvious advantage
on the previous one, since we learn the embedding on a common space the probelm can
be considered as a unimodal problem, and thus can be solved with off-the-shelf metric
learning algorithms.

Let us explore this solution in details.

5.5.1 Learning a common space embedding

Extending the idea of metric learning to the multimodal setting, let X ⊆ Rm and Y ⊆ Rn

denote two different representation spaces, and let {(xr,y+
r ,y

−
r )}r denote the training

triplets with (xr,y
+
r ) being positive pairs and (xr,y

−
r ) being negative ones. A possible

approach would be to look for two embeddings f : X −→ H and g : Y −→ H of the
input data into a common representation space such that df,g = dH ◦ (f × g) is again small
for negative pairs and large for positive ones. This problem is arguably harder to solve
than the unimodal problem, and the methods discussed before are not readily amenable to
this framework. As an alternative, we propose to build a translation function t : Y −→
X simultaneously with the embedding f : X −→ H. The resulting distance df,t =
dH ◦ (f × (f ◦ t)) fits well into the unimodal setting. In what follows, we present a
multimodal maximum margin metric learning procedure based on this idea. To the best of
our knowledge, this is the first time such an extension is considered.

As before, we assume f to be given by an embedding matrix P. We furthermore
assume t to be given by another matrix T such that

df,t(x,y) = ‖Px−PTy‖2
2 (5.62)

Considering the Ty’s as samples in X , the multimodal metric learning problem involving
df,t can be viewed as a conventional unimodal metric learning problem coupled with opti-
mization over T. While such a coupling can be done in various metric learning problems,
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here we adopt the LMCA formulation due to its simplicity. We solve

min
P,T

∑
r ‖Pxr −PTy+

r ‖2
2 + c

∑
r h (1− µr)

s.t. µr = ‖Pxr −PTy−r ‖2
2 − ‖Pxr −PTy+

r ‖2
2,

(5.63)

by alternatingly fixing one of the matrices and solving for the other.
The process is initialized by setting P and T to be orthogonal projection matrices.

A few gradient descent iterations are performed to obtain T. We use an early stopping
strategy in order not to fall far away from the minimizer for P. Next, T is fixed and P
is computed using unimodal maximum margin metric learning in which x+

r and x−r are
replaced with Ty+

r and Ty−r , respectively. At each iteration, the equal error rate (EER,
defined as the rate at which false positive rate equals false negative rate) is evaluated on a
validation set. The process is stopped when the latter ceases to decrease significantly or
starts increasing as a consequence of overfitting. See Algorithm 5.2 for details.

Algorithm 5.2 Alternating minimization for multimodal maximum margin metric learning
Require: Training triplets {(xr,y+

r ,y
−
r ) ∈ X × Y × Y}; target embedding dimension p

{Initialize matrices to orthogonal projections} T = In,m, P = Ip,n.
while change in EER > ε do

Find T by gradient descent with early stopping:

T← T− λ∂C
∂T

(5.64)

where C is the cost function in (5.63) and λ is a step size found by line search.
Find P by unimodal maximum margin metric learning on {(xr,Ty+

r ,Ty−r )}.
end while
return A p× n matrix P, and an m× n matrix T

The method is relatively easy to implement, and allows to incorporate off-the-shelf
unimodal metric learning algorithms. Depending on the unimodal method, this algorithm
can be very fast.

In the rest of this chapter, for the cross-modal maximum margin techniques, we used
two different margin maximization algorithms, they have been presented in section 5.2.2,
and are the algorithms LMCA by [Torresani 2007] and Boosted Max Margin by [Shen 2012].

With a sample size of N = 200, 000, dimensions m and n reaching 120 and p = 64,
learning time did not exceed 30 minutes on an Intel Xeon W3530.
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5.5.2 Training Dataset Creation

Though in theory the learning of the metric can be done directly on the image pixels
[Lee 2009], image pixels are not very well suited for medical image analysis. Medical
images often present high level of noise ; furthermore, in MR images the luminosity is
not normalized, meaning that the range of gray levels may vary between acquisitions. The
projection of the images into a space that is robust to those artifacts allows for a better
learning of the embedding, and a better reproducibility of the results. We opted for the
Invariant Gabor feature space that was presented in section 3.2.

In the same way as for Cross-Modality similarity sensitive hashing, the training dataset
was designed using the groundtruth correspondence between the multi-modal images: fea-
ture vectors at corresponding location in two different modalities were considered similar,
while two feature vectors extracted at a location distant (14 to 16 pixels in our case) from
the groundtruth correspondence location were considered dissimilar. For the training set,
we randomly picked features vectors in four image pairs, with a total of 200×103 samples.

To visually assess the validity of the learned distance, we plot the learned metric from
a point in an image in one modality to all the points in an image in another modality in
figure 5.5 (3D are depicted as 2D slices), in this figure the case of the distance between
T1-MRI and T2-MRI is considered, other datasets include distance between T1-MRI and
PD-MRI and distance between PET scan and CT scan and results will be presented in the
next section. We observe that for almost all the points in the image, the distance is close
to 0 in a very limited area around the point position.

The comparison side by side with the similarity map in figure 5.4 clearly shows that this
similarity yields better and more located minima, which in turn will help the registration
minimization.

Convergence of the Alternating Minimization Method Since the multimodal metric
learing objective function (5.63) is non-convex in P and T simultaneously, we empirically
tested the convergence of the proposed method with different unimodal metric learning
problems used in the second step. The alternating minimization thus yields a steady de-
crease in the EER, until the minimizer of both objectives are reached. When this happens,
an oscillatory behavior is exhibited. We discovered that while the procedure was derived
from the LMCA algorithm, other margin maximization approaches also work very well,
for instance the Boosted max margin metric learning detailed in section 5.2.2, yields even
better results in terms of EER and later of registration than LMCA for the considered
datasets.

We present here the evolution of the equal error rate for both methods, in the case of
two of our datasets in figures 5.6 and 5.7
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5.6 Results

For registration, the algorithm by [Glocker 2008] presented in section 2.3.2 has been used.
The discrete Markov Random Fields approach allows us to make use of non-differentiable
similarity measures such as our cross-modal similarity sensitive hashing. Optimization
strategies such as FastPD[Komodakis 2007, Komodakis 2008] allow to find a good ap-
proximation to the global minimum of the labeling problem regardless of the similarity
cost. These recent advances in optimization have made this work possible.

Two experiments were performed on two sets of images. In the first experiment, MRI
brain scans of ten patients containing perfectly co-registered T1-weighted, T2-weighted,
and Proton Density (PD) images were used for training and testing. In the second exper-
iment, a second set of images composed of whole body scans of four patients acquired
with synchronous CT and PET scans was used for training. All PET data were corrected
for attenuation. In this paper, we focused on the chest part of the body scans.

5.6.1 Multi-Modal MRI image data set

In the case of multimodal MRI registration, two pairs of modalities were considered, T2
and T1 as well as T1 and PD. Given that we performed the training on four patients im-
ages, the registration tests were carried out on the remaining six. One of the six images
was taken as the target image to which all other five images were registered. In order to
remove any rigid transformation bias, an affine alignment was first performed. Non-rigid
registration was performed between each of the five T2 images and the T1 target image;
T1 to PD registration was evaluated in the same way. The same validation protocol was
used as the one used in section 4.5.1. Manual segmentations of the ventricles were used
to validate the alignment.It is to be noted that at the time of writing there is no publicly
available data-base of multimodal images that are co-registered that we could use for train-
ing. The deformation field obtained from the alignment was used to warp a segmentation
of the ventricle of the moving image. The deformed segmentation was compared to the
ventricle segmentation of the target using the DICE coefficient measuring the proportion
of overlap between two segmentations. We don’t present here (as is often the case) the
bare dice coefficient but its increase before and after registration as we believe that it is
a fairer way to compare between registration algorithms (see section 4.5.1). Since the
registration problem is fundamentally an ill-posed problem, a regularization term is usu-
ally introduced to penalize for irregular transformations and make the problem solvable.
However, this smoothing term common to most registration algorithms prevents from hav-
ing any reliable measure on the validity of the registration, since the setting of this term
changes radically the quality of fit. In this paper, we quantify the smoothness of the warp
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using the harmonic energy defined in [Yeo 2009] as the squared Frobenius norm of the
Jacobian of the displacement field averaged over all voxels. The lower is the harmonic en-
ergy, the more rigid and smooth is the transformation. Deformations should be compared
for the same values of harmonic energy.

Figure 5.8 and 5.9 depict the increase in the DICE coefficient as the result of the
registration as function of the harmonic energy.

We compare our method to the most commonly used metrics in multi-modal medical
image alignment in the case of T1-T2 and T1-PD alignment, and for reference, provide
the results obtained in the unimodal case (T1-T1) with a learned unimodal metric using
boosted maximum margin metric learning (Unimodal BMM)and also with the correlation
ratio (Unimodal CR). Each curve represents a different method and consists of 20 point,
factored in with 5 patients (this yields 100 experiments for one single curve). The solid
line represents the average curve, and the whiskers around the line represent the maxima
and minima for the method at the specific harmonic energy.

We can see on these datasets that our methods outperforms all commonly used sim-
ilarity criterion even in the ideal unimodal case (figure 5.8), this is to be expected since,
the amount of information conveyed by the feature vectors is much larger than the pixel
intensity information used by these metrics.

We can also see that our second method adapting state of the art unimodal Max Margin
metric learning algortihms to the multimodal case outperforms the first algorithms, the
cross modality similarity sensitive hasing. We could already have a sens of this result by
inspecting the similarity maps presented in figure 5.4 and 5.5.

We also provide in figure 5.10 a visual assesment of the results in the case of T1 to T2
registration with Cross-modality similarity sensitive hashing.

5.6.2 PET-CT image data set

For this experiments, we used a set of four images composed of whole body scans of four
patients acquired with synchronous CT and PET. Following the leave-one out evaluation
process, for each evaluation, we used three images for training and one image for registra-
tion testing. All four images were alternatively used for testing. In this paper, we focused
on the chest part of the body scans. All PET data was corrected for attenuation. Due to
the fact that PET data intensity distribution depends on the time after the injection of the
tracer and the very high level of noise in the image, learning on raw PET data is very chal-
lenging. To have a more uniform training set, we used the Midway equalization algorithm
described in [Delon 2004], which uses the average cumulative histogram of the training
images as an image equalization tool.

In order to evaluate the registration, we artificially deformed the images using a grid
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of 27 points randomly moved in a vicinity of 10 pixels, the interpolation was recovered
using Thin Plate Splines (TPS) [Bookstein 1989]. Registration was performed between
an undeformed CT image and a TPS deformed PET image. Two measures of the reg-
istration error were considered. First, we show the mean of the absolute intensity error
between the undeformed image and the image recovered through registration. Second, we
warped randomly distributed points in the image with the TPS deformation, then applied
the recovered transformation to these points, the second measure of the error is the mean
distance between the undeformed points and the recovered points.

Figure 5.11 depicts the two registration error measures as function of the harmonic
energy. Each curve represents a different method and consists of 15 points, averaged over
the 4 patients (this yields 60 experiments for one single curve). Comparison is made with
Normalized Mutual Information which is commonly used in the multi-modal alignment of
PET and CT.

Figure 5.12 shows the fused images before and after registration, in an alignment made
using multi modal boosted maximum margin (CMBMM).

5.7 Conclusion
In this Chapter, we presented two very novel approaches for metric learning towards multi-
modal image fusion. The first approach, Cross Modality Similarity Sensitive Hashing is
a generalization of similarity-sensitive hashing to multi-modal data. To the best of our
knowledge, this is the first attempt to approach the challenging problem of cross-modality
similarity learning as an embedding problem. We showed that using cross-modality sim-
ilarity learning allows to efficiently perform alignment of medical images acquired with
different modalities. While in retrieval applications the Hamming embedding is advanta-
geous due to its low computational and storage complexity and easy integration into exist-
ing database managements systems, the Hamming metric is discrete-valued and involves
a non-differentiable non-linearity.

This is why we developed our second approach that extends large margin component
analysis to deal with the multi-modal case and adopts boosted max margin concepts. The
resulting metric is continuous, differentiable and is computationally efficient. Further-
more, it seems to inherit strong discrimination power and outperforms other learning-
based methods. Further improvement of the method such as the use of convex criteria to
determine the embeddings and the metric could also add theoretical stability in the pro-
cess. The use of non-linear data assumptions can be easily encoded in the process through
kernel-based methods and is currently under investigation. Last but not least, the use of
context through local interactions between observations could make the process more ro-
bust and help differentiate between cases where similar features are observable in different
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anatomical structures.
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
 

Figure 5.3: Creation of a common embedding space: features are extracted from a set of
two perfectly aligned images, this feautres are each embeded in different spaces X and
Y . Using similarity sensitive hashing we aim to lear two projection functions f and g
that will map the elements from X and Y respectively into a common space H in which
elements that were labeled as similar in the training set are embedded close to each other
(red circle) while dissimlar pairs are embeded as far away as possible. The dimension of
the embedding space H is a parameter of the algorithm
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Figure 5.4: Distance map: plot of the learned distance taken between the feature vector extracted
in the red square position on the left on the T1-MRI and all of the feature vectors extracted on the
corresponding co-registered T2-MRI image. Far right is a profile extracted on the same line as the
reference position. Bottom row presents the less distinctive case, notice the 15 voxels neighborhood
around the extraction position.
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Figure 5.5: Distance map: plot of the learned distance taken between the feature vector extracted
in the red square position on the left on the T1-MRI and all of the feature vectors extracted on the
corresponding co-registered T2-MRI image. Far right is a profile extracted on the same line as the
reference position.
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Figure 5.6: Evolution of the Equal Error Rate (EER) with the iterations of the alternate
minimization for the PET CT dataset
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Figure 5.7: Evolution of the Equal Error Rate (EER) with the iterations of the alternate
minimization for the T1-MRI T2-MRI dataset
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CM-SSH
MOE-MRF

Ma-Margin LMCA
MaxMargin BMM

NMI
Unimodal CR

Figure 5.8: Evolution of the difference in dice coefficient as a function of the harmonic
energy, each single curve factors in 100 experiments, the solid line curve represents the
average dice coefficient increase while the whiskers ends represent the minimum and max-
imum increase in the dice coefficient. Here is presented the case of T1 to PD MRI registra-
tion, presented are the results with Normalized mutual information (NMI), Unimodal Cor-
relation Ration (Unimodal CR), Mixture of experts with MRF (MOE-MRF), our Cross-
modality similarity sensitive hashing (CM-SSH), our two adapted measures Corss Modal
Max margin Boosted Max MArgin (Max-Margin BMM), and with LMCA (Max-Margin
LMCA)
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Figure 5.9: Evolution of the difference in dice coefficient as a function of the harmonic
energy, each single curve factors in 100 experiments, the solid line curve represents the
average dice coefficient increase while the whiskers ends represent the minimum and max-
imum increase in the dice coefficient. Here is presented the case of T1 to T2 MRI regis-
tration, presented are the results with Normalized mutual information (NMI), Unimodal
Bosted Max Margin (Unimodal BMM) which represents the Metric Learning ideal case,
Mixture of experts with MRF (MOE-MRF), our Cross-modality similarity sensitive hash-
ing (CM-SSH), our two adapted measures Corss Modal Max margin Boosted Max Margin
(CM BMM), and with LMCA (CM-LMCA)
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Figure 5.10: Sample of the registration results obtained for T1-T2 registration with Cross
modality similarity sensitive hashing. Top row: Source Image T1-MRI image. Second
Row: target T2-MRI image. Third Row: deformed image after multi-modal deformable
registration. Bottom Row: left, deformation field of the registration, right, checker-board
image between the target and the deformed source.
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Figure 5.11: Error measure as a function of the Harmonic Energy, our methods are de-
noted as CM-BMM and CM-LMCA. Top row: mean absolute difference of the images.
Bottom row: mean distance between undeformed points and points after transformation
recovery
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Figure 5.12: Sample from the PET CT registration data set. Registration was performed
here with multi modal boosted maximum margin (CMBMM). Top row: fused images
before registration, Bottom row: after registration



Chapter 6

Markov Random Field Training for
Image Registration

The previously discussed similarity metrics (Chapter 4 and 5) both suffer from the same
drawback. In order to learn the similarity metric we need to have at our disposition a data
set of perfectly registered images. This predicament is usually quite seldom in clinical
cases, where simultaneous acquisition is usually infeasable.

This fact led us to try and relax this constraint and work by matching organs bound-
aries. The registration process we have in mind involves detecting the boundaries of an
organ and use this information as the driving force of the registration.

However boundary detection itself is already a challenge in the case of medical images.
In this work we use a training data set of pairs of images that are not co-registered and we
ask to also have manual segmentations of the organs of interest. Using these segmentations
we learn probability distributions on the organs by boosting (section 6.1), and use Markov
Random Fields training (section 6.3) to learn the correct amount of boundary smoothing
to apply locally to get organ boundaries as close to the manual segmentation as possible.

In a sense the algorithm we present here performs concurrent segmentation and regis-
tration of the organs. Concurrent segmentation and registration has first been investigated
in the neuroimaging community [Ashburner 1997]. Recent work include [Xiaohua 2004]
where a Maximum a Posteriori Model is computed to take into account both segmentation
and registration, [Gooya 2011] where Expectation maximization is used to incorporate in-
formation of tumor growth in the registration process, in [Lu 2011] where bayseian model
of both registration and segmentation are learned and then assembled using a conditional
modeling. All these approaches deal with inefficient bayesian modeling of the interactions
which tend to be slow especially with large data such as medical images. Recently was
proposed an interesting approach [Parisot 2012b] that uses a two leveled Markov Random
Field to model the segmentation. One level controls the segmentation and the other con-
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trols the registration. This method yields significantly faster performance. While being
closer to this last work our method however lays the emphasis on the registration part, and
even subpar segmentation results can lead to decent registration performances.

6.1 Boosting
The idea of boosting follows closely the one of Mixture of Experts (see section 4.2.3), in
the setting of classification. For now let us focus on binary classification where the goal is
to apply a label−1 or 1 to an unforeseen data sample, given learning on a labeled data-set.

Intuitively, let us assume we have access to an expert (in [Freund 1999] the authors
present a horse race expert), we want to gain his knowledge and have access to a collection
of data (that would be the health of the horse, the state of the track, the number of wins...).
For each of these data, the expert is able to give a rule of thumb (play a horse that won in the
last race for instance). On the whole the expert won’t know how he makes his decisions,
they are based on a lot of factors that he weights according to his own experience, but we
can use this set of rule of thumbs to make an expert of our own. Some rule of thumbs
might be contradictory, so we need to apply the right rule of thumb on the right data, and
know which one to trust the most for all possible input data.

The idea of boosting is that given a data set on which we know the outcomes (a labeled
data set), and given a base function ( a weak learner in the boosting framework ) which
gives us a rule of thumb, we are going to learn an additive function, sum of several rule of
thumbs on weighted data. Each round will add a rule of thumb to the decision function.
The weights will be chosen according to the outcomes of each decision round, in order to
emphasize the samples that have been misclassified in the previous rounds. The weights
are boosting the misclassified samples, hence the name of these techniques.

6.1.1 AdaBoost
Let us have a look at one of the first very successful boosting algorithm: AdaBoost
[Freund 1995] and is given in Algorithm 6.1. AdaBoost is a discrete boosting algorithm
in the sense that the final classification function is a sum of weak learners that have their
output values in {−1, 1}. Boosting methods with real valued weak learners have been also
investigated and we will discuss one such method in section 6.1.2. Here is only discussed
the boosting methods, discussions on the weak learner will be provided in section 6.1.3.

AdaBoost maintains a list of boosting weights Wt(i) during iterations. The choice of
α is done to make the new weighted problem maximally difficult for the weak learner as
shown in equation 6.1. AdaBoost (or Adaptive Boosting) is a method that adapts to the
error rates of the weak hypotheses.
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Algorithm 6.1 Adaboost
Require: (x1, y1), . . . , (xN , yN) ∈ (X , {−1, 1})

{Initialization} ∀i ∈ {1, . . . , N},W1(i) =
1

N
for t = 1 to T do
• Train weak learner using distribution Wt

• Get weak hypothesis ht : X → {−1, 1} with error

εt =
∑

{i|ht(xi)6=yi}

Wt(i)

• Update α

αt ←
1

2
log

(
1− εt
εt

)
• Update W

Wt+1(i)← Wt(i)

Zt
exp (−αtyiht(xi))

Where Zt is chosen such that
∑

iWt+1(i) = 1
end for
return

H(x) = sign

(
T∑
i=1

αtht(x)

)
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αt = argmax
α

∑
i

Wt(i) exp (−αyiht(xi)) (6.1)

Moreover in [Freund 1995] it is proven that the training error drops exponentially fast
as soon as the weak learners are better than random, that is that the weighted expectation
for the classification of the training set with the weak learner is better than 1/2. If we
denote by γt the distance of εt to 1/2 then the error drops is bounded by the exponential of
the square of γt.

Unlike many learning algorithms, boosting is said to be robust to over-fitting with the
increase in T . In [Freund 1999], the authors present a bound with high probability on the
generalization error that is independent on the number of rounds T , giving an insight on
the claims of robustness to over-fitting.

In [Friedman 2000], an in-depth analysis of AdaBoost is given, where the problem is
seen as the minimization of a functional with an additive logistic regression model. It is
indeed proven that AdaBoost builds an additive logistic regression model via Newton-like
updates for the minimization of the functional J(H):

J(H) = E [exp (−yH(x))] (6.2)

Where E[·] denotes the expectation. It immediately follows that J(H) is minimized at:

H(x) =
1

2
log

P (y = 1 |x)

P (y = −1 |x)
(6.3)

A very interesting result, that gives us access to the classification probabilities, which we
will use in the development of this chapter:

P (y = 1 |x) =
exp (H(x))

exp (−H(x)) + exp (H(x))
(6.4)

P (y = −1 |x) =
exp (−H(x))

exp (−H(x)) + exp (H(x))
(6.5)

6.1.2 GentleBoost

Using the remarks done on AdaBoost, two new Boosting algorithms are presented in
[Friedman 2000], namely LogitBoost and Gentle AdaBoost or GentleBoost, the idea of
which is to circumvent the use of log-ratios (found in the setting of α) that can be unsta-
ble in extreme case of the error value ε. GentleBoost also makes use of real valued weak
learners, the output of which then gives a confidence level on how well the classification
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is done for each sample. A weak learner is then in essence a regression function. In the
AdaBoost procedure, we chose ht that minimizes the cost:

J(Ht−1(x) + ht(x)) = E [exp (−yHt−1(x) + yht(x))] (6.6)

GentleBoost considers minimizing the Taylor approximation to this cost:

J(H) ∝ E
[
exp (−yHt−1(x)) (y − ht(x))2] (6.7)

GentleBoost algorithm (6.2) is empirically shown to be more stable than other boosting
algorithms.

Algorithm 6.2 GentleBoost
Require: (x1, y1), . . . , (xN , yN) ∈ (X , {−1, 1})

{Initialization} ∀i ∈ {1, . . . , N},W1(i) =
1

N
H(x) = 0

for t = 1 to T do
• Fit the regression function ht(x) by weighted least-squares of y to x with weights
Wt

• Update H
H(x)← H(x) + ht(x)

• Update W

Wt+1(i)← Wt(i)

Zt
exp (−yiht(xi))

Where Zt is chosen such that
∑

iWt+1(i) = 1
end for
return

sign (H(x)) = sign

(
T∑
i=1

ht(x)

)

For the rest of this chapter, GentleBoost will be the algorithm of choice.

6.1.3 Choice of the weak learner
In the case of real valued weak learner, two types of functions are the most common. First
and by far the most used is the regression stump function expressed as:

ht(x) = a1 [xk < θ] + b1 [xk ≥ θ] (6.8)
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where 1[·] is the indicator function and xk denotes the kthcomponent of x, four parameters
have to be set for this function: a, b, θ and k. Finding these four parameters in a weighted
least square setting is very fast, making the regression stump usually the function of choice
with GentleBoost.

However a smoother function can lead to a better fit to the data, which then tends to
diminish the required number of iterations T , unfortunately fitting a smoother function is
usually more computationally expensive. Such a function can be a generalized logistic
function:

ht(x) = a+
b− a

(1 + θ exp (−λ (xk − x0)))1/ν
(6.9)

where 7 parameters have to be found.
In the discrete case, weak learners usually are decision trees, from the binary decision

stump to more complex decision trees as can be found in [Freund 1996].

6.1.4 Multiclass Bossting
Until now we only have seen binary classification algorithms, and indeed boosting al-
gorithms are intrinsically binary. However, very early on strategies have been presented
to use boosting algorithms in a multiclass setting. AdaBoost.M1 and AdaBoost.M2 were
presented in [Freund 1995], and AdaBoost.MH, AdaBoost.MO and AdaBoost.MR were
presented in [Schapire 1999b].

Overall, two types of strategies are used. Seldom used is the One against One strategy,
where one model is constructed for each pair of classes. Then the classification of an
unknown sample is done by maximum voting where each model votes for one class. More
commonly used is the One against All strategy, where there is one model constructed per
class, and is trained to distinguish the samples from this class against the samples of all the
other classes. Classification of an unknown sample is done by finding the maximum output
of all models. Various variants of these methods have been used, such as the Hamming
loss coding that is used in AdaBoost.MH. In our experiments we used a simple One against
All strategy with yielded good performance.

It has to be noted that the energy that is minimized by this strategy then becomes:

J(H) =
C∑
i=1

E [exp (−yiHi(x))] (6.10)

where C is the number of classes. Then through the minimizer of J , following equation
6.4, the probability of a sample to belong to a class Ci is given by:
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P (x ∈ Ci) =
exp (Hi(x))∑C
j=1 exp (Hj(x))

(6.11)

6.1.5 Advantages and weaker aspects of boosting methods

One of the main advantages of boosting methods is the ease of implementation and the
relative computational efficiency of the methods since AdaBoost for instance is of com-
plexity O (dNT ) where d is the dimension of X . The second main advantage that we
already discussed is the apparent robustness of Boosting methods to over-fitting which
means in practice less time spent tuning one of the only parameters that is the number of
rounds T .

However it has to be understood that these advantages come with a price. First, al-
though boosting type of algorithms tend to have a naturally large margin as discussed
in [Koltchinskii 2002] it is clear that the boosting methods such as AdaBoost and its
variants were not designed to maximize the margin between samples and the decision
boundary. And the choice of a weak learner also impacts on the margins, giving a trade
off between over-fitting and margin maximization. The lack of explicit margin maxi-
mization leads boosting methods to be extremely sensitive to labeling noise, as shown in
[Dietterich 2000].

6.1.6 Experiments with Multiclass GentleBoost

In this chapter we’ will tackle the problem of CT to T2-MRI image registration of the liver.
Due to lack of a proper image database and harsh memory requirements as will be seen
later, all the experiments are conducted in 2D.

In the experiments on multiclass boosting we considered of a training data set of one
3D CT image of one patient consisting in 365 slices, of which we retained 35 for training.
In each of the slices manual segmentation of the liver and the background has been per-
formed, resulting in three classes, the liver, the background and the rest of the abdomen.
An exemplar slice and its corresponding segmentation can be seen in figure 6.1. For each
image we densely extract Gabor Features as explained in section 3.1, the extracted Gabor
features have 15 orientations and 4 scale levels, and we extract 5× 5 patches of the image.
The Patches are rendered intensity shift invariant by removing the average intensity of the
image (The DC component of the patch filter, see section 3.1). Altogether we end up with
a 85 dimensional feature vector (15× 4 + 5× 5) for each pixel position in each of the 35
images. We use the manual segmentations as a labeling on the feature vector space and
train the GentleBoost Multiclass Classifier on this data set.
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In this experiment the testing data set consists in on 2D slice extraceted form the CT
scaner of a second patient’s liver. This image and a manual segmentation of it are provided
in figure 6.2. Finally, we provide in figure 6.3 the probabilities estimated on the test
image and the resulting segmentation. It has to be noted that the resulting classification
result roughly detects the liver position, and this result alone could be satisfying for many
applications (like detection). However, the resulting segmentation is very jittery and we
would like to get closer to the manual segmentation, this will be the purpose of the next
two sections.

Figure 6.1: Exemplar image extracted from the CT image training data set and the com-
panion segmentation

As we want to tackle the problem of CT to T2-MRI registration, we conducted the
exact same experiment on T2 MRI images. For the training data set we used a 39 slice
T2-MRI image of one patient of which we extracted 35 slices for training. An exemplar
image alongside a manual segmentation of it can be found in figure 6.4. Testing was done
on one slice of a second patient. This testing data set can be found in figure 6.5. Finally,
estimated probabilities on the test image can be found in figure 6.6.

6.2 Markov Random Field Smoothing
Classification methods like boosting make one major assumption on the data, they assume
that it is independent and identically distributed (iid). However when dealing with images
(medical or not), it is obvious that any data extracted at one pixel position is not iid with
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Figure 6.2: Testing data-set along side a manual segmentation of it

regards to data extracted in neighboring locations. This is due to the spatial coherence of
an image, given one pixel value in one position it is often easy to predict the values of the
neighboring pixels.

Markov Random Fields are very suitable to model this type of interaction. Indeed a
Markov random field models each pixel label as a random variable. The Markovian prop-
erty of this field states that each variable is only dependent on a neighborhood of variables
(and not on all variables). Markov Random Field modeling for image processing was ex-
plored very early in [Geman 1984], but the algorithmic complexity for solving continuous
Markov random fields problem made this solution impractical.

Advances in the domain of graph-cuts (as in [Boykov 2001] ) and discrete Markov
Random Fields (MRFs) (as in [Kolmogorov 2006, Komodakis 2008]) made the use of
Markov Random Fields models tractable (we refer the reader to section: 2.3.2 for more
discussions on discrete Markov Random Fields). Notably, MRFs have been used in many
image segmentation applications as a way to propagate certainties and uncertainties among
neighboring pixel locations [Boykov 2006]. In practice taking into account neighboring
pixels dependence acts as a smart and localized smoothing of the segmentation map, hence
the title of this section. MRF segmentation has been explored in medical applications
notably in [Lee 2008, Besbes 2009].

In the remainder of this chapter we will consider a discrete Markov Random Field
Model built on a graph G, the nodes of which correspond to the pixel locations in the
image, the node system will be denoted V . The edge system E will be discussed later in
this section. Here we will only consider MRFs in which a node shares an interaction with
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Figure 6.3: Probability distribution estimated on the test image, blues correspond to low
probabilities and reds to high probability, the bottom right image is the resulting classifi-
cation result.

one node at a time, a pairwise interaction.
The discrete MRF model as described in [Komodakis 2008] is formulated as a labeling

problem in which each node is assigned a label ` ∈ L. We then want to find the optimal
labeling that minimizes the energy:

E(`) =
∑
p∈V

up(`p) +
∑
{p,q}∈E

vp,q(`p, `q) (6.12)
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Figure 6.4: Exemplar image extracted from the T2-MRI image training data set and the
companion segmentation

Figure 6.5: T2-MRI testing data-set along side a manual segmentation of it

In our case, the unary cost up will contain the information given by the GentleBoost classi-
fier while the paiwise term v will be a term that penalizes changes in classes forcing a local
smoothness constraint. The unary cost is modelled through the GentleBoost probability:
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Figure 6.6: Probability distribution estimated on the T2-MRI test image, blues correspond
to low probabilities and reds to high probability.

up(`p) = − log
(
P
(
π(xp) ∈ C`p

))
(6.13)

The pairwise cost that we will use throughout the remainder of this chapter follows a
pairwise cost given in [Boykov 2006] and perfectly suited for feature driven segmentation:

vp,q(`p, `q) = λ exp

(
−‖π(xp)− π(xq)‖2

σ2

)
δp 6=q (6.14)

Where π(xp) is the feature vector extracted in the pixel position of xp, δ the discrete Dirac
distribution, σ and λ are parameters. Even though cross validation could be performed
on σ to get the best possible value, we found in our experiments that using the standard
deviation of the feature space gave good results. It is obvious that if λ is zero then the
minimum of the energy coincides with the the gentleBoost classification. The pairwise
term is equal to λ when the feature vectors are equal and the labels are not matching, and
close to zero when the labels are not matching but the feature vectors are dissemblant. It
is ineffective when the labels are matching. The idea is to penalize mismatching labeling
when we have matching features but allow label mismatch when the feature distance shows
a high likelihood of presenting a border. This term is known to be edge preserving as
opposed to the δ function used on its own.

6.2.1 Neighborhood Paradigm
In our experiments we tested two kinds of Neighborhoods (figure 6.7). The first Neigh-
borhood is a simple 4-Neighborhood as represented in figure 6.7(a) each node is paired
with its immediate horizontal and vertical neighbor. Since this is done for each node in the
graph, each node in the center of the graph ends up being connected to 4 nodes, hence the



6.3. MARKOV RANDOM FIELD TRAINING 125

name. This Neighborhood system is widely used in the literature and usually yields good
segmentation results. Segmentation results using this neighborhood are given in figure 6.8.
It has to be noted that the results displayed here are the best results obtained with respect
to the mean squared error computed with the ground truth segmentation when we change
the parameter λ. There is obviously a trade off between an over smoothing of the segmen-
tation that would get rid of the gray and white artifacts that appear in the segmentation but
at the same time would result in an over smoothed liver segmentation.

We conducted a second set of experiments with a much more complex Neighborhood,
which we name here Circular Neighborhood. Each node is connected with 16 nodes
distributed on circles all originating from the central node as shown in figure 6.7(b). In
the same fashion as with the 4-Neighborhood this means that a central node in the graph is
connected to 48 nodes. The complexity of this Neighborhood will be fully understood in
the next section, for now it is obvious that such a Neighborhood tends to over-smooth the
segmentation and in figure 6.9 we show the best result obtained using the Neighborhood
alongside what happens when we use a λ parameter slightly too high. We can see that
this neighborhood gets rid of the artifacts we had with the 4-Neighborhood, but at the
same time tends to over-smooth the segmentation. We would like to be able to retain
the best of both worlds, by selectively activating the pairs that smooth the segmentation
in the right places. Next section will attempt to solve this problem using state-of-the-art
MRF-Learning techniques.

6.3 Markov Random Field Training

One of the drawbacks of Markov Random Field segmentation in the formulation that we
used in the previous section is that each label gets the same kind of smoothing and even
each label pairs. However we could set a coefficient in front of the pairwise term that is
itself label dependent. This coefficient would help us favor some label pairs and not others.
In the case of the circular Neighborhood we could also fancy having a coefficient for each
circle and label pairs for instance, this would lead to vary how large the neighborhood (and
in turn the smoothing) would be as a function of the label pairs. Unfortunately this kind
of parametrization is intractable by hand we have 3 classes, it makes 9 pairs of labels with
4 circles we end up with 36 parameters to set. With cross-validation alone this process
would be very long with no guarantee of optimality.

In [Komodakis 2011], Komodakis proposes an optimization strategy to infer the weight-
ing parameters of a new Markov Random Field from a database of previously labeled
MRFs. Let us consider two families of weights w1 and w2 that are weights to the unary
and the pairwise cost respectively in the MRF formulation:
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(a) 4-Neighborhood (b) Circular Neighborhood

Figure 6.7: Neighborhood Paradigm, the red circle symbolizes the central node, the green
circles represent the nodes that are paired with the red node, (a) Simple 4-Neighborhood,
(b) Circular Neighborhood where 16 pairs of nodes are distributed 4 circles depicted in
blue.

Figure 6.8: Best Segmentation result obtained with a 4-Neighborhood paradigm
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Figure 6.9: Best Segmentation result obtained with a 3 Circles Neighborhood paradigm
and to the right Illustration of the segmentation degradation when the smoothness param-
eter is too large

E(`) =
∑
p∈V

w1 · up(`p) +
∑
{p,q}∈E

w2 · vp,q(`p, `q) (6.15)

there is no restriction on the action of the weights in this modelization and we could ac-
tually have different weights for each and every node for each and every label combi-
nations. In this work we will restrict ourselves to have one w1(`p) for each label and
one w2 (`p, `q, circle(q)) for each label pair and each circle in the circular Neighborhood,
denoted as circle(q).

The MRF formulation then becomes:

Ew(`) =
∑
p∈V

w1(`p) · up(`p) +
∑
{p,q}∈E

w2 (`p, `q, circle(q)) · vp,q(`p, `q) (6.16)

Now let us assume that we have access to a collection of K graphs Gk, for which we
know the unary and pairwise potentials for every label configuration and the ground-truth
labeling that we will denote L̄k. In a maximum margin Markov network we seek the
parameters w1 and w2 such that the MRF energy of the desired solution L̄k is smaller than
the MRF energy of any other solution Lk.
The minimization problem is expressed as:
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min
w

{
µR(w) +

K∑
k=1

[
Ew
Gk

(
L̄k
)
−min
Lk

{
Ew
Gk

(Lk)
}]}

(6.17)

where R(w) is a regularization term and was set equal to
1

2
‖w‖2 in our case. Equation

6.17 is not solvable in polynomial time since even the estimation of the second term is not
tractable. As was the case with FastPD [Komodakis 2008], [Komodakis 2011] uses a pri-
mal dual strategy to solve equation 6.17. Each graphGk is decomposed in sub-hypergraphs
Gi
k and the minimization of the Dual approximation to the equation is done by a projected

sub-gradient algorithm. Details of the algorithm can be found in [Komodakis 2011].

6.3.1 Experiments

For our experiments we use the same potentials that were used in the previous section,
however the training set is not formed similarly to section 6.1.6. The images that were used
as testing images are now part of the training data set, the training data-set is composed
of 35 CT slices of one patient along with their manual segmentation and 30 CT slices of a
second patient also segmented. Of those 65 slices, 45 randomly drawn slices were used for
the training of the boosting classifier and the remaining 20 slices were used for the MRF
training. 1000 iterations of the projected sub-gradient algorithm were necessary which
amounts to 6 hours of computation on a regular desktop computer at the time of writing.
The parameter µ was taken equal to 1 in all experiments. We assess the convergence of the
algorithm by looking at the error between the estimated labels and the actual ground-truth
labels. In the remainder of this chapter only the circular neighborhood will be taken into
consideration.

In figure 6.10 is shown the image on which we show the effectiveness of this new
approach. This is a new slice extracted on the CT-scan of a third patient. Training the MRF
gives us access to the familly of optimal parameters w, using them we solve problem 6.16
in the same way as in the previous section. The resulting segmentation is provided in figure
6.11. As a mean of comparison we provide in figure 6.12 the segmentation results obtained
only GentleBoost classification and a MRF segmentation using the circular Neighborhood
(best result shown).

6.4 Multi-Modal Image Registration with MRF Training

Let us assume that we have access to a data-base multi-modal images that have been
manually segmented. At least the organs of interest have been dutifully segmented in
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Figure 6.10: New testing CT image extracted from the CT scan of a third patient.

Figure 6.11: Result obtained with MRF training.

both modalities. Note that here we do not require that the images in the data base are co-
registered, we merely require that all images are at least rigidly registered to better focus
the learning process on deformed features instead of large translations and rotations.

For each modality, using the data-set we can learn the probability of a pixel in the
image to belong to a given class using GentleBoost (see section 6.1). More over, for the
source modality we can learn the MRF parameters that yield the best segmentation results.
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Figure 6.12: Boosting segmentation results (left) and MRF segmentation(right) results
obtained on the testing set of figure 6.10, provided as a mean of comparison with figure
6.11

Let us denote by MRFT (J,x) the class that was given to pixel position x in source
image J by the MRF segmentation scheme weighted by MRF training. Then we can use
the probability of a feature vector of the target image to belong to this class as a similarity
measure:

C (J(x), I(y)) = − log (PI (π(y) ∈MRFT (J,x))) (6.18)

The idea behind this similarity measure for registration is for each iteration to compute
the segmentation of the source image J using MRF segmentation and the coefficients
learned by MRF training. Then using the probability computed using the GentleBoost
coefficients learned on a set of images similar to the target image, we drive the registration
by matching each sample from the source image to the sample in the target image it has
the most probability to belong to.

MRF segmentation is a really fast process using FastPD [Komodakis 2008], and the
estimation of the probabilities for the source image to feed the MRF segmentation is a
matter of a matrix product and can be made in a really efficient fashion. Since the target
image is not moving, the probability map on the target image is computed beforehand.

Plugging in this similarity criterion in the algorithm of [Glocker 2009] explained in
section 2.3.2, we get registration results for a 2D image of size 512 × 512 in about 20
minutes. The real limitation of this algorithm is the training stage of the MRF where sev-
eral images have to be taken into consideration with quite a large Neighborhood system,
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if extended to 3D this Neighborhood system would become even larger and memory be-
comes the limiting factor (more than 200GB of memory needed). This is why in all our
experiments we use 2D images as a proof of concept of our method.

6.4.1 Experiments

Essentially the same data sets were used in the registration experiments and all the previous
experiments. Only the size of the training database has grown since 3 patients were used
for training and one patient was used for testing and the testing patient was alternatively
changed between the testing and the training data set in a leave one out cross validation
fashion. As it can be seen, only the number of iterations on the GentleBoost algorithm
is a required parameter of the registration training algorithm, we used a number of iter-
ations equal to 1000. The number of iterations of the MRF training algorithm could be
set automatically by detecting when convergence is reached in the projected sub-gradient
algorithm and as such is not discussed here.

For our experiments we used 120 image slices for training the source CT image that
were randomly separated in 80 images for training the boosting algorithm and 40 for train-
ing the MRF. 80 image slices from the T2-MRI images were extracted for the training of
the probability distribution. Registration tests were done on 5 images in each patient re-
sulting in 20 possible registration.

For the evaluation of the quality of registration we used manual segmentations of the
liver in both source and target images and look at the evolution of the Dice coefficient
before and after registration, the bigger the increase, the better the registration.

We expect that a criterion that was based on the learning of specific liver segmentations
will yield better results on the Dice coefficient computed on the liver than a criterion that
makes no distinction between organs.

As with previous sections, and since registration are only equal up to a smoothing pa-
rameter, which is not comparable across similarity measure, we chose to use the invariant
measure of the Harmonic Energy, on 20 different settings of the smoothing parameter.
This makes for a total of 400 registration experiments. Comparison was made against Mu-
tual Information criterion which was the only one to give decent results on this data set, all
other commonly criteria, including Normalized Mutual information failed at registration
and gave negative dice coefficient increase. We deem this data set as extremely in this
regard.
Experimentation results are given in figure 6.13.

We can see that our method does slightly better on the whole than mutual information
however, the dice coefficient increase is not very significant, and since all other similarity
measure used failed, we have reasons to believe that this is in part due to the extreme
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Figure 6.13: Evolution of the Dice coefficient increase as a function the harmonic energy,
400 registration experiments were necessary for this graph. The solid line represents the
average case while each end of the whiskers represent the minimum and the maximum
value.

challenge posed by this data-set.

6.5 Conclusion and future work
The results presented here are promising and we believe that further studies will prove that
this method can potentially be a good alternative to state of the art similarity measures,
provided that a training set of source and target manual segmentation is accessible.

An interesting extension to this work could be made by investigating the effects of
reweighting a commonly used similarity cost such as Mutual Information with the prob-
ability used in equation 6.18. Indeed our similarity criterion is basically acting on the
boundaries of the organs and lets the regularization term act on the inside of the organ. We
believe that using such a reweighted criterion could help get the best of both worlds and
drive registration even inside the organs.



Chapter 7

Conclusion

In this thesis we made an attempt to show how the recent advances in optimization and ma-
chine learning can allow us to make efficient and robust algorithms for image registration.
Let us have a look at the major contributions of this work.

7.1 Contributions
The main contribution of this thesis is to show the possibility of effectively learning a
similarity measure in a multi-modal case. A subject that has attracted a lot of interest
along the years is the subject of metric learning. To the best of our knowledge, Metric
Learning was not adapted to the case where similar data was not originating from the same
space. We have shown that it is possible to modify some state of the art metric learning
algorithms to apply them to the multi-modal case with impressive results on sometimes
very challenging data sets such as the PET-CT data set.

In the same way we provided a very simple method targeted at utilizing an off the shelf
maximum margin metric learning algorithm in the multi modal case. The resulting simi-
larity measure is differentiable and usages of this technique go way beyond the framework
of this thesis

Regression of medical images for registration was considered as a first attempt at multi-
modal image registration. While this approach only uses the information of one image
modality in the learning stage, local image regression (the regression function does not
depend on the local position) can be still applied in image restoration and many computer
vision applications.

Last but not least, we presented a method for multi-modal metric learning that is based
on concurrent segmentation and registration of the images. The major advantage of this

133
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method over the methods presented previously is that it allows to learn a similarity criterion
on a data-set of images that are not aligned, since no point to point correspondence is
necessary to perform the learning. We believe that this type of methods paves the way
to a broad type of methods where heavy learning is used to create per instance similarity
criterions allowing much better alignment.

7.2 Future Work
In this work we have provided promising solutions to the very challenging task of multi-
modal image registration, yet immediate extensions of this work can be envisioned:

• Metric Learning algorithms presented here all share the same feature, they are all
based on classification algorithms, and provide a confidence of the classification be-
tween similar and not similar as a measure in the common space. However we have
access in the learning data set to a much richer information, that is a full fledged met-
ric (taking for instance the maximum of two intra-modality distances for the same
samples, could be used as an inter-modality distance for learning). The distance
could then be learned by regression and not classification leading to a much more
appropriate measure.

• The combination of the algorithms in chapter 5 and 6 could lead to very promising
results. Using the segmentation learning to find the organs in each image and then
appliying a per organ distance criterion, that was learned on similar organs would
dramatically improve the results of both methods.

• Probably the most promising direction for metric learning in multi-modal image
registration will be online metric learning. Indeed a similarity criterion could be
refined as the registration process is undertaken using the correspondences found
on the fly to make a better similarity criterion that would in turn make a better
registration.



7.2. FUTURE WORK 135



136 CHAPTER 7. CONCLUSION



Publications by the Author

• F. Michel and N. Paragios. Image transport regression using mixture of experts and
discrete Markov random fields. In Biomedical Imaging: From Nano to Macro, 2010
IEEE International Symposium on, pages 1229–1232. IEEE, 2010.

• C. Wang, O. Teboul, F. Michel, S. Essafi and N. Paragios. 3D knowledge-based
segmentation using pose-invariant higher-order graphs. Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2010, pages 189–196, 2010.

• M.M. Bronstein, A.M. Bronstein, F. Michel and N. Paragios. Data fusion through
cross-modality metric learning using similarity-sensitive hashing. In Computer Vi-
sion and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3594–3601.
IEEE, 2010.

• F. Michel, M. Bronstein, A. Bronstein and N. Paragios. Boosted metric learning
for 3d multi-modal deformable registration. In Biomedical Imaging: From Nano to
Macro, 2011 IEEE International Symposium on, pages 1209–1214. IEEE, 2011.

137



138 CHAPTER 7. CONCLUSION



Bibliography

[Ashburner 1997] J Ashburner and K Friston. Multimodal image coregistration and par-
titioning - a unified framework. Neuroimage, vol. 6, no. 3, pages 209–217, 1997.
113

[Bar-Hillel 2003] A. Bar-Hillel, T. Hertz, N. Shental and D. Weinshall. Learning
distance functions using equivalence relations. In MACHINE LEARNING-
INTERNATIONAL WORKSHOP THEN CONFERENCE-, volume 20, page 11,
2003. 84

[Bar-Hillel 2006] A. Bar-Hillel, T. Hertz, N. Shental and D. Weinshall. Learning a ma-
halanobis metric from equivalence constraints. Journal of Machine Learning Re-
search, vol. 6, no. 1, page 937, 2006. 84

[Bardera 2006] A. Bardera, M. Feixas, I. Boada and M. Sbert. High-dimensional normal-
ized mutual information for image registration using random lines. Biomedical
Image Registration, pages 264–271, 2006. 22

[Belkin 2003] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural computation, vol. 15, no. 6, pages 1373–
1396, 2003. 81

[Bengio 2004] Y. Bengio, J.F. Paiement, P. Vincent, O. Delalleau, N. Le Roux and
M. Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spec-
tral clustering. Advances in neural information processing systems, vol. 16, pages
177–184, 2004. 82

[Bernardino 2006] A. Bernardino and J. Santos-Victor. Fast IIR isotropic 2-D complex
Gabor filters with boundary initialization. Image Processing, IEEE Transactions
on, vol. 15, no. 11, pages 3338–3348, 2006. 38

[Besbes 2009] A. Besbes, N. Komodakis, G. Langs and N. Paragios. Shape priors and
discrete mrfs for knowledge-based segmentation. In Computer Vision and Pattern

139



140 BIBLIOGRAPHY

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1295–1302. IEEE,
2009. 121

[Bishop 2006] C.M. Bishop and SpringerLink (Service en ligne). Pattern recognition and
machine learning, volume 4. springer New York, 2006. 48, 56

[Blackall 2000] J. Blackall, D. Rueckert, C. Maurer, G. Penney, D. Hill and D. Hawkes.
An image registration approach to automated calibration for freehand 3D ul-
trasound. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2000. Springer, 2000. 20

[Bookstein 1989] F.L. Bookstein. Principal warps: Thin-plate splines and the decompo-
sition of deformations. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 11, no. 6, pages 567–585, 1989. 103

[Boykov 2001] Y. Boykov, O. Veksler and R. Zabih. Fast approximate energy minimiza-
tion via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 23, no. 11, pages 1222–1239, 2001. 121

[Boykov 2006] Y. Boykov and G. Funka-Lea. Graph cuts and efficient ND image segmen-
tation. International Journal of Computer Vision, vol. 70, no. 2, pages 109–131,
2006. 121, 124

[Bronstein 2010] M.M. Bronstein, A.M. Bronstein, F. Michel and N. Paragios. Data fu-
sion through cross-modality metric learning using similarity-sensitive hashing. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 3594–3601. IEEE, 2010. 93

[Cachier 2000] Pascal Cachier and Xavier Pennec. 3D non-rigid registration by gradi-
ent descent on a gaussian-windowed similarity measure using convolutions. In
Mathematical Methods in Biomedical Image Analysis, 2000. Proceedings. IEEE
Workshop on, pages 182–189. IEEE, 2000. 18

[Cachier 2003] P. Cachier, E. Bardinet, D. Dormont, X. Pennec and N. Ayache. Iconic
feature based nonrigid registration: the PASHA algorithm. Computer Vision and
Image Understanding, vol. 89, no. 2, pages 272–298, 2003. 11

[Castellano-Smith 2001] A. Castellano-Smith, T. Hartkens, J. Schnabel, D. Hose, H. Liu,
W. Hall, C. Truwit, D. Hawkes and D. Hill. Constructing patient specific models
for correcting intraoperative brain deformation. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2001, pages 1091–1098. Springer,
2001. 20



BIBLIOGRAPHY 141

[Chechik 2009] G. Chechik, V. Sharma, U. Shalit and S. Bengio. An online algorithm for
large scale image similarity learning. In Proc. NIPS, volume 1. Citeseer, 2009. 91

[Chechik 2010] G. Chechik, V. Sharma, U. Shalit and S. Bengio. Large scale online
learning of image similarity through ranking. The Journal of Machine Learning
Research, vol. 11, pages 1109–1135, 2010. 91

[Choi 2000] Y. Choi and S. Lee. Injectivity conditions of 2D and 3D uniform cubic B-
spline functions. Graphical models, vol. 62, no. 6, pages 411–427, 2000. 12

[Christensen 1994] G.E. Christensen. Deformable shape models for anatomy. PhD thesis,
Washington University, 1994. 16

[Chung 2002] A. Chung, W. Wells, A. Norbash and W. Grimson. Multi-modal image
registration by minimising kullback-leibler distance. Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2002, pages 525–532, 2002. 14,
22

[Collignon 1995] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens and
G. Marchal. Automated multi-modality image registration based on information
theory. In Information processing in medical imaging, volume 3, pages 264–274,
1995. 19

[Collins 2002] M. Collins, R.E. Schapire and Y. Singer. Logistic regression, AdaBoost
and Bregman distances. Machine Learning, vol. 48, no. 1, pages 253–285, 2002.
87

[Cox 2001] T.F. Cox and M.A.A. Cox. Multidimensional scaling, volume 1. CRC Press,
2001. 78, 79

[Davis 2007] J.V. Davis, B. Kulis, P. Jain, S. Sra and I.S. Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th international conference on Machine
learning, pages 209–216. ACM, 2007. 87, 91

[Delon 2004] J. Delon. Midway image equalization. Journal of Mathematical Imaging
and Vision, vol. 21, no. 2, pages 119–134, 2004. 102

[Deriche 1993] R. Deriche. Recursively implementating the Gaussian and its derivatives.
1993. 39

[Dietterich 2000] T. Dietterich. Ensemble methods in machine learning. Multiple classi-
fier systems, pages 1–15, 2000. 97, 119



142 BIBLIOGRAPHY

[Felsberg 2001] M. Felsberg and G. Sommer. The monogenic signal. Signal Processing,
IEEE Transactions on, vol. 49, no. 12, pages 3136–3144, 2001. 32

[Freeman 1991] W.T. Freeman, E.H. Adelson, Massachusetts Institute of Technology.
Media Laboratory. Vision and Modeling Group. The design and use of steerable
filters. IEEE Transactions on Pattern analysis and machine intelligence, vol. 13,
no. 9, pages 891–906, 1991. 32

[Freund 1995] Y. Freund and R. Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In Computational learning theory, pages
23–37. Springer, 1995. 95, 114, 116, 118

[Freund 1996] Y. Freund and R.E. Schapire. Experiments with a new boosting al-
gorithm. In MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-, pages 148–156. MORGAN KAUFMANN PUBLISHERS,
INC., 1996. 118

[Freund 1999] Y. Freund, R. Schapire and N. Abe. A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, page
1612, 1999. 114, 116

[Friedman 2000] J. Friedman, T. Hastie and R. Tibshirani. Additive logistic regression: a
statistical view of boosting (With discussion and a rejoinder by the authors). The
annals of statistics, vol. 28, no. 2, pages 337–407, 2000. 116

[Geman 1984] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, no. 6, pages 721–741, 1984. 121

[Geusebroek 2003] J.M. Geusebroek, A.W.M. Smeulders and J. Van De Weijer. Fast
anisotropic gauss filtering. Image Processing, IEEE Transactions on, vol. 12,
no. 8, pages 938–943, 2003. 39

[Globerson 2006] A. Globerson and S. Roweis. Metric learning by collapsing classes.
Advances in neural information processing systems, vol. 18, page 451, 2006. 85

[Glocker 2008] B. Glocker, N. Komodakis, G. Tziritas, N. Navab and N. Paragios. Dense
image registration through MRFs and efficient linear programming. Medical Im-
age Analysis, vol. 12, no. 6, pages 731–741, 2008. 15, 16, 101

[Glocker 2009] B. Glocker, N. Komodakis, N. Navab, G. Tziritas and N. Paragios. Dense
registration with deformation priors. In Information Processing in Medical Imag-
ing, pages 540–551. Springer, 2009. 16, 130



BIBLIOGRAPHY 143

[Goldberger 2004] J. Goldberger, S. Roweis, G. Hinton and R. Salakhutdinov. Neigh-
bourhood components analysis. 2004. 85

[Gooya 2011] A. Gooya, K. Pohl, M. Bilello, G. Biros and C. Davatzikos. Joint seg-
mentation and deformable registration of brain scans guided by a tumor growth
model. Medical Image Computing and Computer-Assisted Intervention–MICCAI
2011, pages 532–540, 2011. 113

[Grau 2007] V. Grau, H. Becher and J.A. Noble. Registration of multiview real-time 3-D
echocardiographic sequences. Medical Imaging, IEEE Transactions on, vol. 26,
no. 9, pages 1154–1165, 2007. 34

[Guetter 2005] C. Guetter, C. Xu, F. Sauer and J. Hornegger. Learning based non-rigid
multi-modal image registration using Kullback-Leibler divergence. Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2005, pages 255–262,
2005. 22

[Hamza 2003] A. Hamza and H. Krim. Image registration and segmentation by maximiz-
ing the jensen-rényi divergence. In Energy Minimization Methods in Computer
Vision and Pattern Recognition, pages 147–163. Springer, 2003. 21

[Han 2010] X. Han. Feature-constrained nonlinear registration of lung CT images. Med-
ical Image Analysis for the Clinic: A Grand Challenge, pages 63–72, 2010. 34

[Haralick 1973] R.M. Haralick, K. Shanmugam and I.H. Dinstein. Textural features for
image classification. Systems, Man and Cybernetics, IEEE Transactions on, vol. 3,
no. 6, pages 610–621, 1973. 29, 30

[He 2003] Y. He, A.B. Hamza and H. Krim. A generalized divergence measure for robust
image registration. Signal Processing, IEEE Transactions on, vol. 51, no. 5, pages
1211–1220, 2003. 21

[Hermosillo 2002] Gerardo Hermosillo, Christophe Chefd’Hotel and Olivier Faugeras.
Variational methods for multimodal image matching. International Journal of
Computer Vision, vol. 50, no. 3, pages 329–343, 2002. 18

[Hofmann 2008] M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff,
M. Brady, B. Schölkopf and B. J. Pichler. MRI-Based Attenuation Correction for
PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registra-
tion. Journal of Nuclear Medicine, 2008. xiv, 47, 48, 60



144 BIBLIOGRAPHY

[Honnorat 2010] N. Honnorat, R. Vaillant and N. Paragios. Guide-wire extraction through
perceptual organization of local segments in fluoroscopic images. Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2010, pages 440–448,
2010. 32

[Jacob 2004] M. Jacob and M. Unser. Design of steerable filters for feature detection us-
ing Canny-like criteria. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 26, no. 8, pages 1007–1019, 2004. 32

[Jacobs 1991] R.A. Jacobs, M.I. Jordan, S.J. Nowlan and G.E. Hinton. Adaptive mixtures
of local experts. Neural computation, vol. 3, no. 1, pages 79–87, 1991. 52

[Jain 2008] P. Jain, B. Kulis, I.S. Dhillon and K. Grauman. Online Metric Learning and
Fast Similarity Search. Advances in Neural Information Processing Systems 21,
pages 761–768, 2008. 91

[Jenkinson 2001] M. Jenkinson and S. Smith. A global optimisation method for robust
affine registration of brain images. Medical image analysis, vol. 5, no. 2, pages
143–156, 2001. 9

[Juan 2009] L. Juan and O. Gwun. A comparison of sift, pca-sift and surf. International
Journal of Image Processing, vol. 3, no. 4, pages 143–152, 2009. 34

[Karaçali 2007] B. Karaçali. Information theoretic deformable registration using local
image information. International journal of computer vision, vol. 72, no. 3, pages
219–237, 2007. 22

[Keller 2006] P.W. Keller, S. Mannor and D. Precup. Automatic basis function construc-
tion for approximate dynamic programming and reinforcement learning. In Pro-
ceedings of the 23rd international conference on Machine learning, pages 449–
456. ACM, 2006. 85

[Kim 2004] J. Kim and J.A. Fessler. Intensity-based image registration using robust cor-
relation coefficients. Medical Imaging, IEEE Transactions on, vol. 23, no. 11,
pages 1430–1444, 2004. 18

[Klein 2007] S. Klein, M. Staring and J.P.W. Pluim. Evaluation of optimization methods
for nonrigid medical image registration using mutual information and B-splines.
Image Processing, IEEE Transactions on, vol. 16, no. 12, pages 2879–2890, 2007.
13



BIBLIOGRAPHY 145

[Kokkinos 2008] I. Kokkinos and A. Yuille. Scale invariance without scale selection. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8. IEEE, 2008. xiii, 33, 39

[Kolmogorov 2006] V. Kolmogorov. Convergent tree-reweighted message passing for en-
ergy minimization. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 28, no. 10, pages 1568–1583, 2006. 16, 121

[Koltchinskii 2002] Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin dis-
tributions and bounding the generalization error of combined classifiers. The
Annals of Statistics, vol. 30, no. 1, pages 1–50, 2002. 119

[Komodakis 2007] N. Komodakis and G. Tziritas. Approximate labeling via graph cuts
based on linear programming. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 29, no. 8, pages 1436–1453, 2007. 16, 63, 101

[Komodakis 2008] N. Komodakis, G. Tziritas and N. Paragios. Performance vs compu-
tational efficiency for optimizing single and dynamic MRFs: Setting the state of
the art with primal-dual strategies. Computer Vision and Image Understanding,
vol. 112, no. 1, pages 14–29, 2008. 16, 63, 101, 121, 122, 128, 130

[Komodakis 2011] N. Komodakis. Efficient training for pairwise or higher order crfs via
dual decomposition. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1841–1848. IEEE, 2011. 125, 128

[Kwok 2003] J.T. Kwok and I.W. Tsang. Learning with idealized kernels. In MA-
CHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-,
volume 20, page 400, 2003. 85

[Lee 2008] C.H. Lee, S. Wang, A. Murtha, M. Brown and R. Greiner. Segmenting brain
tumors using pseudo–conditional random fields. Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2008, pages 359–366, 2008. 121

[Lee 2009] D. Lee, M. Hofmann, F. Steinke, Y. Altun, N.D. Cahill and B. Schlkopf.
Learning the similarity measure for multi-modal 3d image registration. In IEEE-
CVPR, 2009. 25, 100

[Liao 2006] R. Liao, C. Guetter, C. Xu, Y. Sun, A. Khamene and F. Sauer. Learning-
based 2D/3D rigid registration using Jensen-Shannon divergence for image-
guided surgery. Medical Imaging and Augmented Reality, pages 228–235, 2006.
22



146 BIBLIOGRAPHY

[Loeckx 2010] D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen and P. Suetens. Non-
rigid image registration using conditional mutual information. Medical Imaging,
IEEE Transactions on, vol. 29, no. 1, pages 19–29, 2010. 22

[Lorenzi 2013] Marco Lorenzi, Nicholas Ayache, Giovanni B Frisoni and Xavier Pen-
nec. LCC-Demons: a robust and accurate diffeomorphic registration algorithm.
NeuroImage, 2013. 18

[Lowe 2004] D.G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, vol. 60, no. 2, pages 91–110, 2004. 34

[Lu 2011] C. Lu, S. Chelikani, X. Papademetris, J.P. Knisely, M.F. Milosevic, Z. Chen,
D.A. Jaffray, L.H. Staib and J.S. Duncan. An integrated approach to segmenta-
tion and nonrigid registration for application in image-guided pelvic radiother-
apy. Medical Image Analysis, vol. 15, no. 5, pages 772–785, 2011. 113

[Luenberger 2008] D.G. Luenberger and Y. Ye. Linear and nonlinear programming, vol-
ume 116. Springer Verlag, 2008. 14

[Maes 1997] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens. Mul-
timodality image registration by maximization of mutual information. Medical
Imaging, IEEE Transactions on, vol. 16, no. 2, pages 187–198, 1997. 9, 14, 19

[Maintz 2001] JBA Maintz, PA Van den Elsen and MA Viergever. 3D multimodality med-
ical image registration using morphological tools. Image and vision computing,
vol. 19, no. 1-2, pages 53–62, 2001. xiii, 23, 24

[Mallat 1999] S.G. Mallat. A wavelet tour of signal processing. Academic Pr, 1999. 34

[Manjunath 1996] B.S. Manjunath and W.Y. Ma. Texture features for browsing and re-
trieval of image data. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 18, no. 8, pages 837–842, 1996. xiii, 35, 36

[Masotti 2006] M. Masotti. A ranklet-based image representation for mass classification
in digital mammograms. Medical physics, vol. 33, page 3951, 2006. 31

[Masotti 2008] M. Masotti and R. Campanini. Texture classification using invariant ran-
klet features. Pattern Recognition Letters, vol. 29, no. 14, pages 1980–1986, 2008.
31

[Mellor 2004] M. Mellor and M. Brady. Non-rigid multimodal image registration us-
ing local phase. Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2004, pages 789–796, 2004. 34



BIBLIOGRAPHY 147

[Michel 2010] F. Michel and N. Paragios. Image transport regression using mixture of
experts and discrete Markov random fields. In Biomedical Imaging: From Nano
to Macro, 2010 IEEE International Symposium on, pages 1229–1232. IEEE, 2010.
63, 65

[Michel 2011] F. Michel, M. Bronstein, A. Bronstein and N. Paragios. Boosted metric
learning for 3d multi-modal deformable registration. In Biomedical Imaging:
From Nano to Macro, 2011 IEEE International Symposium on, pages 1209–1214.
IEEE, 2011. 93

[Mikolajczyk 2005] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir and L.V. Gool. A comparison of affine region detectors.
International journal of computer vision, vol. 65, no. 1, pages 43–72, 2005. 29

[Neemuchwala 2002] H. Neemuchwala, A. Hero and P. Carson. Image registration us-
ing entropic graph-matching criteria. In Signals, Systems and Computers, 2002.
Conference Record of the Thirty-Sixth Asilomar Conference on, volume 1, pages
134–138. IEEE, 2002. 21

[Ojala 2002] T. Ojala, M. Pietikainen and T. Maenpaa. Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 24, no. 7, pages 971–987,
2002. 30

[Onimaru 2003] R. Onimaru, H. Shirato, S. Shimizu, K. Kitamura, B. Xu, S. Fukumoto,
T.C. Chang, K. Fujita, M. Oita, K. Miyasakaet al. Tolerance of organs at risk
in small-volume, hypofractionated, image-guided radiotherapy for primary and
metastatic lung cancers. International Journal of Radiation Oncology* Biology*
Physics, vol. 56, no. 1, pages 126–135, 2003. xiii, 4

[Ou 2009] Y. Ou and C. Davatzikos. DRAMMS: deformable registration via attribute
matching and mutual-saliency weighting. In Information Processing in Medical
Imaging, pages 50–62. Springer, 2009. 16, 37

[Ou 2011] Y. Ou, A. Sotiras, N. Paragios and C. Davatzikos. DRAMMS: Deformable
registration via attribute matching and mutual-saliency weighting. Medical Image
Analysis, vol. 15, no. 4, pages 622–639, 2011. 37

[Pan 2006] X.B. Pan, M. Brady, R. Highnam and J. Declerck. The use of multi-scale
monogenic signal on structure orientation identification and segmentation. Digital
Mammography, pages 601–608, 2006. 34



148 BIBLIOGRAPHY

[Parisot 2012a] S. Parisot, H. Duffau, S. Chemouny and N. Paragios. Graph-based De-
tection, Segmentation & Characterization of Brain Tumors. In CVPR-25th IEEE
Conference on Computer Vision and Pattern Recognition 2012, 2012. 37

[Parisot 2012b] S. Parisot, H. Duffau, S. Chemouny and N. Paragios. Joint Tumor Seg-
mentation and Dense Deformable Registration of Brain MR Images. Medical Im-
age Computing and Computer-Assisted Intervention–MICCAI 2012, pages 651–
658, 2012. 113

[Pennec 1999] X. Pennec, P. Cachier and N. Ayache. Understanding the “demon’s al-
gorithm”: 3D non-rigid registration by gradient descent. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 1999, pages 597–605.
Springer, 1999. 10

[Pescia 2008] D. Pescia, N. Paragios and S. Chemouny. Automatic detection of liver tu-
mors. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE
International Symposium on, pages 672–675. IEEE, 2008. 30

[Pluim 2000] J. Pluim, J. Maintz and M. Viergever. Image registration by maximiza-
tion of combined mutual information and gradient information. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2000, pages 103–129.
Springer, 2000. 14, 20

[Pluim 2003] J.P.W. Pluim, J.B.A. Maintz and M.A. Viergever. Mutual-information-
based registration of medical images: a survey. Medical Imaging, IEEE Trans-
actions on, vol. 22, no. 8, pages 986–1004, 2003. 19

[Pluim 2004] J.P.W. Pluim, J.B.A. Maintz and M.A. Viergever. f-Information measures
in medical image registration. Medical Imaging, IEEE Transactions on, vol. 23,
no. 12, pages 1508–1516, 2004. 20

[Press 1986] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterlinget al. Numerical
recipes, volume 547. Cambridge Univ Press, 1986. 13

[Randen 1999] T. Randen and J.H. Husoy. Filtering for texture classification: A com-
parative study. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 21, no. 4, pages 291–310, 1999. 31

[Ren 2005] L. Ren, G. Shakhnarovich, J.K. Hodgins, H. Pfister and P. Viola. Learning
silhouette features for control of human motion. ACM Transactions on Graphics
(TOG), vol. 24, no. 4, pages 1303–1331, 2005. 86, 93



BIBLIOGRAPHY 149

[Roche 1998] A. Roche, G. Malandain, X. Pennec and N. Ayache. The correlation ratio
as a new similarity measure for multimodal image registration. Medical Image
Computing and Computer-Assisted Interventation–MICCAI 1998, pages 1115–
1124, 1998. 14, 20

[Roche 2001] A. Roche, X. Pennec, G. Malandain and N. Ayache. Rigid registration of 3-
D ultrasound with MR images: a new approach combining intensity and gradient
information. Medical Imaging, IEEE Transactions on, vol. 20, no. 10, pages 1038–
1049, 2001. 9, 43

[Roweis 2000] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, vol. 290, no. 5500, pages 2323–2326, 2000. 80

[Rueckert 1999] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach and D.J.
Hawkes. Nonrigid registration using free-form deformations: application to breast
MR images. Medical Imaging, IEEE Transactions on, vol. 18, no. 8, pages 712–
721, 1999. 9, 11, 12, 13

[Rueckert 2000] D. Rueckert, MJ Clarkson, DLG Hill and DJ Hawkes. Non-rigid regis-
tration using higher-order mutual information. In Proceedings of SPIE, volume
3979, page 438, 2000. 21, 22

[Rueckert 2006] D. Rueckert, P. Aljabar, R. Heckemann, J. Hajnal and A. Hammers.
Diffeomorphic registration using B-splines. Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2006, pages 702–709, 2006. 12

[Russakoff 2004] D. Russakoff, C. Tomasi, T. Rohlfing and C. Maurer. Image similarity
using mutual information of regions. Computer Vision-ECCV 2004, pages 596–
607, 2004. 22

[Schapire 1999a] R.E. Schapire. A brief introduction to boosting. In International Joint
Conference on Artificial Intelligence, volume 16, pages 1401–1406. LAWRENCE
ERLBAUM ASSOCIATES LTD, 1999. 87

[Schapire 1999b] R.E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine learning, vol. 37, no. 3, pages 297–336,
1999. 118

[Schmid 2000] C. Schmid, R. Mohr and C. Bauckhage. Evaluation of interest point de-
tectors. International Journal of computer vision, vol. 37, no. 2, pages 151–172,
2000. 29



150 BIBLIOGRAPHY

[Sederberg 1986] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geomet-
ric models. ACM Siggraph Computer Graphics, vol. 20, no. 4, pages 151–160,
1986. 11

[Setia 2006] L. Setia, A. Teynor, A. Halawani and H. Burkhardt. Image classification
using cluster cooccurrence matrices of local relational features. In Proceedings of
the 8th ACM international workshop on Multimedia information retrieval, pages
173–182. ACM, 2006. 30

[Shakhnarovich 2005] G. Shakhnarovich. Learning task-specific similarity. PhD thesis,
Massachusetts Institute of Technology, 2005. 86, 93

[Shalev-Shwartz 2004] S. Shalev-Shwartz, Y. Singer and A.Y. Ng. Online and batch
learning of pseudo-metrics. In Proceedings of the twenty-first international con-
ference on Machine learning, page 94. ACM, 2004. 90

[Shekhovtsov 2008] A. Shekhovtsov, I. Kovtun and V. Hlavác. Efficient MRF deformation
model for non-rigid image matching. Computer Vision and Image Understanding,
vol. 112, no. 1, pages 91–99, 2008. 16

[Shen 2002] D. Shen and C. Davatzikos. HAMMER: hierarchical attribute matching
mechanism for elastic registration. Medical Imaging, IEEE Transactions on,
vol. 21, no. 11, pages 1421–1439, 2002. 11, 18

[Shen 2008] C. Shen, A. Welsh and L. Wang. PSDBoost: Matrix-generation linear pro-
gramming for positive semidefinite matrices learning. Proc. Adv. Neural Inf. Pro-
cess. Syst, pages 1473–1480, 2008. 89

[Shen 2009] C. Shen, J. Kim, L. Wang and A. Hengel. Positive semidefinite metric learn-
ing with boosting. Advances in neural information processing systems, 2009. 89

[Shen 2012] C. Shen, J. Kim, L. Wang and A. Hengel. Positive Semidefinite Metric Learn-
ing Using Boosting-like Algorithms. Journal of Machine Learning Research, Ac-
cepted in 2012. 89, 99

[Shental 2006] N. Shental, T. Hertz, D. Weinshall and M. Pavel. Adjustment learning and
relevant component analysis. ECCV 2002, pages 181–185, 2006. xv, 82, 83

[Smeraldi 2002] F. Smeraldi. Ranklets: orientation selective non-parametric features ap-
plied to face detection. In Pattern Recognition, 2002. Proceedings. 16th Interna-
tional Conference on, volume 3, pages 379–382. IEEE, 2002. xiii, 30, 31



BIBLIOGRAPHY 151

[Smeraldi 2003] F. Smeraldi. Ranklets: a complete family of multiscale, orientation se-
lective rank features. Research Report RR0309-01, Dept. of Computer Science,
Queen Mary, Univ. of London, 2003. 30

[Smola 1998] A.J. Smola and B. Schölkopf. Learning with kernels. Citeseer, 1998. 76

[Sotiras 2010] A. Sotiras, Y. Ou, B. Glocker, C. Davatzikos and N. Paragios. Simulta-
neous geometric-iconic registration. Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2010, pages 676–683, 2010. 37

[Sotiras 2011] A. Sotiras. Discrete Image Registration: a Hybrid Paradigm. PhD thesis,
ECP, 2011. 10, 13, 18

[Studholme 1999] C. Studholme, D.L.G. Hill, D.J. Hawkeset al. An overlap invariant
entropy measure of 3D medical image alignment. Pattern recognition, vol. 32,
no. 1, pages 71–86, 1999. 20

[Studholme 2000] C. Studholme, R.T. Constable and J.S. Duncan. Accurate alignment of
functional EPI data to anatomical MRI using a physics-based distortion model.
Medical Imaging, IEEE Transactions on, vol. 19, no. 11, pages 1115–1127, 2000.
20

[Studholme 2001] C. Studholme, E. Novotny, IG Zubal and JS Duncan. Estimating tissue
deformation between functional images induced by intracranial electrode implan-
tation using anatomical MRI. NeuroImage, vol. 13, no. 4, pages 561–576, 2001.
20

[Tenenbaum 2000] J.B. Tenenbaum, V. De Silva and J.C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, vol. 290, no. 5500,
pages 2319–2323, 2000. xv, 79

[Thirion 1998] J.P. Thirion. Image matching as a diffusion process: an analogy with
Maxwell’s demons. Medical image analysis, vol. 2, no. 3, pages 243–260, 1998.
10

[Torresani 2007] L. Torresani and K. Lee. Large margin component analysis. Advances
in neural information processing systems, vol. 19, page 1385, 2007. 89, 99

[Tsang 2005] I.W. Tsang, P.M. Cheung and J.T. Kwok. Kernel relevant component anal-
ysis for distance metric learning. In Neural Networks, 2005. IJCNN’05. Proceed-
ings. 2005 IEEE International Joint Conference on, volume 2, pages 954–959.
Ieee, 2005. 83



152 BIBLIOGRAPHY

[Tuceryan 1993] M. Tuceryan and A.K. Jain. Texture analysis. Handbook of pattern
recognition and computer vision, vol. 276, 1993. 29

[Vercauteren 2007a] T. Vercauteren, X. Pennec, E. Malis, A. Perchant and N. Ayache.
Insight into efficient image registration techniques and the demons algorithm. In
Information Processing in Medical Imaging, pages 495–506. Springer, 2007. 14

[Vercauteren 2007b] T. Vercauteren, X. Pennec, A. Perchant and N. Ayache. Non-
parametric diffeomorphic image registration with the demons algorithm. Medi-
cal Image Computing and Computer-Assisted Intervention–MICCAI 2007, pages
319–326, 2007. 11

[Viola 1997] P. Viola and W.M. Wells III. Alignment by maximization of mutual infor-
mation. International journal of computer vision, vol. 24, no. 2, pages 137–154,
1997. 19

[Wachinger 2011] C. Wachinger and N. Navab. Entropy and Laplacian images: Struc-
tural representations for multi-modal registration. Medical Image Analysis, 2011.
xiii, 24, 25, 26

[Wang 2008] C. Wang, L. Zhang and H.J. Zhang. Learning to reduce the semantic gap
in web image retrieval and annotation. In Proceedings of the 31st annual inter-
national ACM SIGIR conference on Research and development in information
retrieval, pages 355–362. ACM, 2008. 85

[Wang 2010] C. Wang, O. Teboul, F. Michel, S. Essafi and N. Paragios. 3D knowledge-
based segmentation using pose-invariant higher-order graphs. Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2010, pages 189–196,
2010. 37

[Wein 2008] W. Wein, S. Brunke, A. Khamene, M.R. Callstrom and N. Navab. Automatic
CT-ultrasound registration for diagnostic imaging and image-guided intervention.
Medical Image Analysis, vol. 12, no. 5, pages 577–585, 2008. xiv, 43, 44

[Weinberger 2006] K.Q. Weinberger, J. Blitzer and L.K. Saul. Distance metric learning
for large margin nearest neighbor classification. In In NIPS. Citeseer, 2006. 88

[Weinberger 2009] K.Q. Weinberger and L.K. Saul. Distance metric learning for large
margin nearest neighbor classification. The Journal of Machine Learning Re-
search, vol. 10, pages 207–244, 2009. 88



BIBLIOGRAPHY 153

[Wells III 1996] W.M. Wells III, P. Viola, H. Atsumi, S. Nakajima and R. Kikinis. Multi-
modal volume registration by maximization of mutual information. Medical image
analysis, vol. 1, no. 1, pages 35–51, 1996. 19

[Xiang 2011] B. Xiang, C. Wang, J.F. Deux, A. Rahmouni and N. Paragios. Tagged car-
diac MR image segmentation using boundary & regional-support and graph-based
deformable priors. In Biomedical Imaging: From Nano to Macro, 2011 IEEE In-
ternational Symposium on, pages 1706–1711. IEEE, 2011. 37

[Xiang 2012] B. Xiang, C. Wang, J.F. Deux, A. Rahmouni and N. Paragios. 3D cardiac
segmentation with pose-invariant higer-order MRFs. 2012. 37

[Xiaohua 2004] C. Xiaohua, M. Brady and D. Rueckert. Simultaneous segmentation and
registration for medical image. Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2004, pages 663–670, 2004. 113

[Xing 2002] E.P. Xing, A.Y. Ng, M.I. Jordan and S. Russell. Distance metric learning,
with application to clustering with side-information. Advances in neural informa-
tion processing systems, vol. 15, pages 505–512, 2002. 84, 91

[Xu 1995] L. Xu, M.I. Jordan and G.E. Hinton. An alternative model for mixtures of ex-
perts. Advances in neural information processing systems, pages 633–640, 1995.
54

[Xue 2004] Z. Xue, D. Shen and C. Davatzikos. Determining correspondence in 3-D
MR brain images using attribute vectors as morphological signatures of voxels.
Medical Imaging, IEEE Transactions on, vol. 23, no. 10, pages 1276–1291, 2004.
18, 34

[Yang 2006] L. Yang and R. Jin. Distance metric learning: A comprehensive survey.
Michigan State Universiy, pages 1–51, 2006. 78

[Yeo 2009] B.T.T. Yeo, T. Vercauteren, P. Fillard, J.M. Peyrat, X. Pennec, P. Golland,
N. Ayache and O. Clatz. DT-REFinD: Diffusion tensor registration with exact
finite-strain differential. Medical Imaging, IEEE Transactions on, vol. 28, no. 12,
pages 1914–1928, 2009. 65, 102

[Yuan 2007] J. Yuan, Y. Wu and M. Yang. Discovery of collocation patterns: from vi-
sual words to visual phrases. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–8. Ieee, 2007. 85



154 BIBLIOGRAPHY

[Zhan 2003] Y. Zhan and D. Shen. Automated segmentation of 3D US prostate images
using statistical texture-based matching method. Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2003, pages 688–696, 2003. xiii, 37

[Zhou 2008] H. Zhou, R. Wang and C. Wang. A novel extended local-binary-pattern
operator for texture analysis. Information Sciences, vol. 178, no. 22, pages 4314–
4325, 2008. 30

[Zhuang 2011] X. Zhuang, S. Arridge, D.J. Hawkes and S. Ourselin. A nonrigid regis-
tration framework using spatially encoded mutual information and free-form de-
formations. IEEE Transactions on Medical Imaging, vol. 30, no. 10, page 1819,
2011. 22

[Zikic 2010] D. Zikic, B. Glocker, O. Kutter, M. Groher, N. Komodakis, A. Kamen,
N. Paragios and N. Navab. Linear intensity-based image registration by Markov
random fields and discrete optimization. Medical Image Analysis, vol. 14, no. 4,
pages 550–562, 2010. 16



BIBLIOGRAPHY 155


	Introduction
	Background and motivations
	Applications in Computer Vision
	Registration of Medical Images


	Metric Learning for Multi-Modal Image Registration
	Image Registration
	Transformation Model
	Non-deformable transformation
	Deformable transformation

	Optimization strategy
	Continuous Optimization
	Discrete Optimization

	Image Matching Criteria
	Uni-modal Registration
	Multi-modal Registration


	Preliminary: Feature extraction and Gabor Features
	Feature extraction framework
	Statistical Feature descriptors
	Signal Processing methods

	Gabor features
	Fast Infinite Impulse Response Anisotropic Gabor filtering
	Building invariances for Gabor filter banks
	Experiment

	3D image regression for multimodal registration
	Regression
	Linear regression
	Ridge regression
	Kernel Ridge Regression
	Bayesian interpretation of linear regression

	Mixture Models
	Expectation maximization
	Gaussian Mixture Model
	Mixture of regression models

	Experiments with regression
	Synthetic Data
	Real Data

	Solving the one to one problem
	Markov Random Field smoothing

	Results
	Evaluation on brain MRI data set
	Evaluation on chest PET-CT data set


	Metric Learning
	Distance Function
	Relaxations to the notion of distance
	Examples of distance functions
	Kernels and RKHS

	Metric Learning and Space Embedding
	Unsupervised Learning
	Supervised Learning

	Multi-Modal Metric Learning
	Cross-Modality Sililarity Sensitive Hashing
	Extension on Similarity sensitive Hashing
	Similarity Map Experiment

	Maximum-Margin Cross-Modal Metric Learning
	Learning a common space embedding
	Training Dataset Creation

	Results
	Multi-Modal MRI image data set
	PET-CT image data set

	Conclusion

	Markov Random Field Training for Image Registration
	Boosting
	AdaBoost
	GentleBoost
	Choice of the weak learner
	Multiclass Bossting
	Advantages and weaker aspects of boosting methods
	Experiments with Multiclass GentleBoost

	Markov Random Field Smoothing
	Neighborhood Paradigm

	Markov Random Field Training
	Experiments

	Multi-Modal Image Registration with MRF Training
	Experiments

	Conclusion and future work

	Conclusion
	Contributions
	Future Work


