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ABSTRACT

Defining a suitable metric is one of the biggest challenges in
deformable image fusion from different modalities. In this
paper, we propose a novel approach for multi-modal metric
learning in the deformable registration framework that con-
sists of embedding data from both modalities into a com-
mon metric space whose metric is used to parametrize the
similarity. Specifically, we use image representation in the
Fourier/Gabor space which introduces invariance to the lo-
cal pose parameters, and the Hamming metric as the target
embedding space, which allows constructing the embedding
using boosted learning algorithms. The resulting metric is
incorporated into a discrete optimization framework. Very
promising results demonstrate the potential of the proposed
method.

Index Terms— Metric Learning, Multi-Modal Registra-
tion, 3D Deformable Registration, Gabor Feature Descriptor

1. INTRODUCTION

Deformable image registration is a notoriously difficult prob-
lem in medical image analysis, mostly due to the number of
parameters to be estimated from the data. This is alleviated
somehow when combining suitable registration metrics with
regularization constraints imposing certain geometric proper-
ties on the deformation field. The definition of a metric can be
either iconic or statistic. In the first case, one seeks for appar-
ent similarities on an appropriate feature space (such as Sum
of Absolute Differences (SAD), Sum of Squared Differences
(SSD), Corelation Ratio (CR) , etc.), while in the second, one
seeks to optimize the measurement of statistical significance.
The first class of methods is more suited to intra-modality,
while the second one is often considered to establish corre-
spondences between different nature of observations.

An inter-modal (multiple modality) deformable align-
ment setting, in which two images come from different imag-
ing modalities, has important clinical applications such as
fusion of anatomic and functional data. Compared to intra-
modal (single modality) registration, the multi-modal case
is much more challenging. In the single modality setting,

despite certain variations in image appearance, one can com-
pare in a reasonable manner observations between images,
thus making the optimization procedure employed for align-
ment the main component of the problem solution. Recent
advances either in continuous [1] and discrete optimization
[2] were able to a certain extend to provide good near-optimal
solutions for intra-modal registration.

This is not the case for inter-modality, because defining
a universal metric able to account for variations of images
often acquired under very different conditions and having
different underlying physical and anatomical properties is
very challenging. Statistical methods exploiting joint densi-
ties are among the most common metrics used in multi-modal
alignment. Mutual information [3], Kullback-Leibler- [4] or
Jensenn-Rényi divergence [5] are the most prominent metrics
used in this type of problems. These metrics work relatively
well when the modalities have similar or correlated statistical
properties, an assumption rarely satisfied in practice. On the
other hand, these methods suffer from several limitations,
including the lack of statistical interpretation when compar-
ing modalities with different underlying imaging physics, the
curse of dimensionality and the lack of sufficient support to
build joint statistics, the lack of smoothness of the objective
function with respect to the registration parameters, and its
non-convexity.

In order to overcome this limitation, recently the idea of
metric learning has been considered. Support vector ma-
chine (SVM)-based regression was used to construct the
metric in [6]. These methods inherit the discontinuity of
the SVM space while at the same time suffer from not be-
ing pose invariant. The use of direct regression between
image modalities is another way of establishing correspon-
dences as suggested in [7, 8]. The idea is to find a non-linear
mapping between the two modalities such that one can pre-
dict/synthesize one modality from the second and convert
the problem into intra-modal registration. The strength of
such an approach is the visual representation of regression,
however the problem of mapping a poor information space
into a richer one is ill-posed and cannot be solved in the most
general case.
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Here, we follow our previous work [9], in which we intro-
duced multimodal similarity sensitive hashing. Considered in
the context of metric learning, the main idea of this approach
is to embed the data of different modalities into a common
metric space, whose metric is used to parametrize the multi-
modal metric. Multi-modal metric learning is thus posed as
optimization over the data embeddings. Considering in par-
ticular the embedding into the space of binary strings with the
Hamming metric, the problem can be formulated as boosted
classification and solved employing boosting algorithms.

In this paper, we study the application of multi-modal
metric learning to the problem of inter-modality alignment,
and in particular cope with real 3D data, in which we have
to take into account the very noisy nature of medical images,
as well as the common illumination changes within the same
modality. This setting forces us to have a learning technique
that can be adapted to those conditions on one hand, and use
invariant Gabor features on the other.

The rest of this paper is organized as follows: In Sec-
tion 2, we formulate the problem of multi-modal alignment
and a generic framework for its solution and we show how to
learn such a metric from examples. Section 3 describes the
implementation used in this paper and presents the results.
Finally, Section 4 concludes the paper.

2. PROBLEM FORMULATION

2.1. Deformable Image Fusion

In the problem of non-rigid alignment, we are given a source
and target images f and g (for simplicity, scalar-valued), de-
fined on a domain Ω (Ω ⊂ R

3 in 3D alignment shown in our
experiments here). In general, the images are related by a
complicated relation,

g(x) = X ◦ f(T (x)), (1)

for all x in Ω. This relation involves a geometric deformation
T and a non-linearity X explaining the changes of appear-
ance between corresponding points. Obviously, T and X are
typically unknown.

State-of-the-art registration methods [2] attempt at esti-
mating the deformation T on a sparse grid Ω ′ ⊂ Ω (|Ω′| �
|Ω|) of control points,

T (x) = x+
∑
p∈Ω′

ρ (‖x− xp‖)Δp, (2)

where Δp is the displacement vector of the control point xp.
Moving a control point results in a local deformation of

the image around it; the weighting function ρ measures the
contribution of a control point in Ω ′ to the displacement of
a point in Ω. The deformation field is found by maximizing
the criterion of point-wise similarity between the target and
deformed source images.

To tackle the problem of X , it is usual to use some local sim-
ilarity function s,

E(T ) =
1

|Ω′|
∑
p∈Ω′

∫
Ω

ρ̂(‖x− xp‖) s(g(x) ,f(T x)) dx (3)

where ρ̂ is a normalized version of ρ. The choice of s is the
critical part of the process. In order to avoid folding on the
deformation grid, a smoothness term on T is added.

For a practical and efficient numerical solution, prob-
lem (3) is posed as an assignment problem in the following
way [2]: Let L = {u1, ..., uk} be a discrete set of labels
corresponding to a quantized version of the deformation
space Θ = {Δ1, ...,Δk}. A label assignment up ∈ L
to a grid node xp ∈ Ω′ is associated with displacing the
node by the corresponding vector Δup . The deforma-
tion field associated with a certain discrete labelling u is
Tu(x) = x +

∑
p∈Ω′ ρ (‖x− xp‖)Δup . Problem 3 can thus

be posed as discrete Markov random field (MRF) optimiza-
tion with respect to the labelling,

E(u) =
1

|Ω′|
∑
p∈Ω′

∫
Ω

ρ̂ (‖x− xp‖) s(g(x), f(Tux))dx

≈ 1

|Ω′|
∑
p∈Ω′

Vp(up), (4)

where Vp is a singleton potential function representing a local
similarity measure. Such a formulation allows to plug in any
similarity function without modifying the scheme itself.

When the source and the target images arise from differ-
ent imaging modalities, we land at the problem of computing
a cross-modality similarity. Modelling such similarity explic-
itly can be very difficult, but learning is possible given exam-
ples of aligned images, as described in the next section.

2.2. Cross-modality metric learning

Let X ⊆ R
m and Y ⊆ R

m′
denote the space of local rep-

resentation of the images. For example, these can be local
patches or descriptors computed on the images in two modal-
ities. Different representations can be used depending on the
modality, so in general X and Y could dramatically differ in
their structure and even dimensionality (m 	= m ′).

Furthermore, let s : X×Y → {±1} denote an (unknown)
similarity function between points in two images, which we
assume for simplicity to be binary: corresponding points are
similar and non-correspondingpoints are dissimilar. The sim-
ilarity s partitions the set X×Y of all pairs of data points into
positives P = {(x, y) : s(x, y) = +1} (e.g. descriptors com-
puted at corresponding points in two images) and negatives
N = {(x, y) : s(x, y) = −1}. Given a training set of posi-
tive and negative examples, the goal of similarity learning is
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to construct another binary similarity function ŝ that approxi-
mates s as faithfully as possible, in the sense that ŝ = +1 for
most pairs in P and ŝ = −1 for most pairs in N .

Since X and Y are often incommensurable, it is impos-
sible to directly compare points from X and Y . To cope
with this problem, we embed the data points into some metric
space (Z, dZ) by means of two maps ξ : X → Z and η : Y →
Z. The distance dZ represents the dissimilarity of the embed-
ded points, in the sense that the lower is dZ(ξ(x), η(y)), the
higher is the probability that s(x, y) = +1.

A particular selection of the n-dimensional Hamming
space H

n as the embedding space Z allows encoding each
data point as a weighted n-bit binary string. h i and αi encode
the ith bit and weight respectively.

dHn(ξ(x), η(y)) =
1

2

n∑
i=1

αi −
1

2

n∑
i=1

αihi(x, y) (5)

The correlation between positive similarity of a pair of points
and small Hamming distance between their corresponding
codes implies that positives are likely to be mapped to the
same code (here, hi(x, y) = (2ξi(x)− 1)(2ηi(y)− 1) and ξi
and ηi denote the ith coordinate of the embeddings). This fact
allows to interpret the Hamming embedding as Similarity-
Sensitive Hashing [10], under which positive pairs have high
collision probability, while negative pairs are unlikely to
collide.

In [9] the Hamming metric is sequentially constructed as
a superposition of weak binary classifiers hi(x, y) by means
of a boosted learning algorithm, generalizing this way the
approach of [10] to multi-modal case. In this paper, we no
longer set a constant αi, but use the standard optimization in
AdaBoost (eq. 7) which yields a smoother metric and bet-
ter training error rates. The boosted cross-modality similarity
learning algorithm, whose structure follows the standard Ad-
aBoost procedure [11], is summarized in Algorithm 1.

The maximization of ri in (6) varies depending on the
form of ξ and η. Using affine projections of the form
ξi(x) = sign(pTi x + ai) and ηi(y) = sign(qTi y + bi), where
pi and qi are, respectively, m- and m′-dimensional unit vec-
tors, and ai and bi are scalars, optimization is performed
with respect to pi, qi, ai, bi. Vectors pi, qi are searched in
the subspace spanned by the M (chosen as 5 in our exper-
iments) largest left and right singular vectors of the matrix
C =

∑K
k=1 wi(k)skxky

T
k (xk and yk are xk and yk centered

by their weighted means). Scalars ai, bi are found by an
equivalent of a line search procedure.

3. MULTIMODAL ALIGNMENT

In the experiments in this paper, we deal with the alignment
of multi-contrast MR image. In order to apply multi-modal
metric learning to our alignment problem, we need to define
the data spaceX and Y on which the similarity is defined, and

Input: K pairs (xk, yk) labelled by
sk = s(xk, yk) ∈ {±1}.

Output: maps ξi : X → {0, 1} and ηi : Y → {0, 1},
and scalars αi, i = 1, . . . , n.

Initialize weights w1(k) = 1/K .
for i = 1, . . . , n do

Select ξi and ηi such that hi maximizes

ri =
K∑

k=1

wi(k)skhi(xk, yk). (6)

Set αi

αi =
1

2
log(1 + ri)−

1

2
log(1− ri) (7)

Update weights according to

wi+1(k) = wi(k)e
−skαihi(xk,yk) (8)

and normalize by sum.
end

Algorithm 1: Boosted cross-modal similarity-sensitive
embedding

the strategy to construct the training set on which the metric
is learned. These aspects are addressed in this section.

3.1. Gabor features

Since robustness to noise and intensity shifts is key in medi-
cal imaging applications, we used Gabor feature vectors that
have such properties by definition. Such features are known to
be robust to noise and generally applicable to many medical
imaging modalities [12]. Given an image in each modality,
we first extract anisotropic Gabor features at every pixel. To
save on the computation time that would be required for the
extraction of 3D Gabor features, we follow the works in [13]
and use two orthogonal 2D Gabor filters :

g(x, y) =
(

1

2πσxσy

)
e

{
− 1

2

(
x2

σ2
x
+ y2

σ2
y

)
+2jπWx

}

h(y, z) =
(

1

2πσyσz

)
e

{
− 1

2

(
y2

σ2
y
+ z2

σ2
z

)
+2jπWy

}

The Gabor filter bank is obtained through the generating
functions with:

gm,n(x, y) = a−mg(x′, y′) and hm,n(y, z) = a−mh(y′′, z′)

x′ = a−m (x cos θ + y sin θ) , y′ = a−m (−x sin θ + y cos θ)

y′′ = a−m (y cosφ+ z sinφ) , z′ = a−m (−y sinφ+ z cosφ)
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Fig. 1. Distance map: plot of the learned distance taken between the feature vector extracted in the red square position on the left on the
T1-MRI and all of the feature vectors extracted on the corresponding co-registered T2-MRI image. Far right is a profile extracted on the
same line as the reference position. Bottom row presents the less distinctive case, notice the 15 voxels neighbourhood around the extraction
position.

θ =
nπ

N
and φ =

nπ

N
where N the range of n, is the number of orientations and
M , the range of m is the number of scales. In order to set
σx, σy, a and W we use the values given in [14]:

a =

(
Uh

Ul

) 1
M−1

and W = Uh

σx =
1

2πσu
and σu =

(a− 1)Uh

(a+ 1)
√
2 ln 2

σy =
1

2πσv
and σv = tan

( π

2N

)√
U2
h

2 ln 2
− σ2

u

We found that Uh = 0.2 and Ul = 0.05 yield the best results.
The zero-mean version of the Gabor filter bank was used

in order have invariance to intensity shifts. Since deformable
registration at the fine scale performs local rotations and scal-
ing, scale- and rotation-invarianceare crucial for a good align-
ment. Reorganizing each feature vector into a 2-dimensional
array w.r.t. scale and orientation, one can see that rotating or
rescaling the image would amount to a translation in the first
and the second dimension of the array, respectively. Follow-
ing [15], we use the Fourier transform magnitude (FTM) to
remove the dependence on rotation and scaling: the Fourier
transform converts translation into a complex phase, which
is removed by taking the magnitude. The symmetry of FTM
representation allows keeping only half of the coefficients that
are now scale- and rotation-invariant and also insensitive to
intensity shift.

In our framework, the use of Gabor features can be con-
sidered as a pre-processing aimed at alleviating the learning
burden: first, by decreasing the dimensionality of our data
spaces X,Y (using the Gabor filter responses rather than raw
patches), and second, by introducing rotation, scale, and in-
tensity shift invariance by construction rather than by learn-
ing. We used M = 4 and N = 12, which amounts to 96

Gabor coefficients, or or 48 coefficients using the FTM. In or-
der to have a fast implementation, we used the idea of [16],
where infinite impulse response filter banks for isotropic Ga-
bor filters are generated and applied it to the anisotropic case
using the fast anisotropic Gaussian filter implementation de-
scribed in [17]. Computation time for a 256×256×48 image
on a Xeon X5560 is 12 seconds. The process can be highly
parallelized, which has not been done here.

3.2. Training set construction

For our experiments, we used the MR brain images of ten
patients. For each patient, perfectly co-registered T1-, T2-
weighted and Proton-Density (PD) images were available.
Four pairs of images were used for training; the rest was
used for testing. The training dataset was designed using
the groundtruth correspondence between the multi-modal
images: feature vectors at corresponding location in two dif-
ferent modalities were considered similar, while two feature
vectors extracted at a location distant 14 to 16 pixels from
the groundtruth correspondence location were considered
dissimilar. For the training set, we randomly picked features
vectors in the four image pairs, with |P| = 20× 103 positive
and |N | = 200× 103 negative pairs.

To visually assess the validity of the learned measure,
we plot the learned metric from a point in the image in one
modality to all the points in the image in second modality in
Fig. 1 (since the data are 3D, two 2D slices are shown). It
is interesting to observe that for some very distinctive points
in the image, the distance is close to 0 in a very limited area
around the point position (first row of Fig. 1), while in less
distinctive image areas, the distance profile is more shallow
around the point. We can note that the size of the valley
around the point of interest in the latter case is around 15 vox-
els in radius, which is consistent with the training set creation.
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Fig. 2. Increase in the DICE coefficient before and after alignment as a function of the harmonic energy. The solid line represents the
average curve, and the whiskers around the line represent the maxima and minima for the method for the specific harmonic energy, CM-SSH
represents our method. Left T2-MRI to T1-MRI registration, right T1-MRI to PD-MRI registration

3.3. Experimental Validation

The validation of our method was performed by a quantitative
measure of the alignment of five of the test images to one
given image (target). None of the images used for training
were part of the test set. Alignment was performed in two
steps: First, affine alignment of all the 5 images to the target,
thus removing all effects due to affine alignment. Second,
non-rigid registration between each of the five T2-weighted
images and the T1-weighted target image (we also repeated
the experiment with the couple PD images/T1 target).

The validation is done by comparison to a manual delin-
eation of the ventricles. We used the deformation field ob-
tained from the alignment to warp a delineation of the ventri-
cle and compared it to the target using the DICE coefficient
measuring the proportion of overlap between two segmenta-
tions. The smoothing term we introduced in Section 2, which
is common to most of the registration algorithms usually pre-
vents from having reliable measures. Indeed, across images
and similarity measures, for the same value of the smooth-
ing term parameter, the smoothness of the warp might appear
completely different. To quantify the smoothness of the warp
we use the harmonic energy defined in [18] as the average
over all voxels of the squared Frobenius norm of the Jacobian
of the displacement field. The lower the harmonic energy, the
more rigid and smooth the transformation.

In Fig. 2, we show the evolution of the increase in DICE
coefficient before and after registration with respect to the
harmonic energy. We compare our method (with invariance
and without) to the most commonly used metrics in multi-
modal medical image alignment in the case of T1-T2 align-
ment, and for reference, provide the results in the uni-modal
case (T1-T1) with Correlation Ratio (CR) metric. Each curve
represents a different method, for each method we tested the
registration from 5 patients to one. None of the patients were

part of the training set. Each curve was computed on 20
points, which yields 100 experiments for one single curve,
only a dozen points per curve are displayed. The solid line
represents the average curve, and the whiskers around the line
represent the maxima and minima for the method for the spe-
cific harmonic energy.In figure 3, we show an example of reg-
istration.

In these results we clearly see the superiority of our
learned metric over most commonly used similarity mea-
sures. Most importantly, we see that our method performs
better than the ideal case of the uni-modal Correlation Ratio.

4. CONCLUSION

In this paper, we used the recent advances in metric learning
to learn an optimal similarity measure for image registration.
The extreme flexibility of the learning algorithm allowed us
to design robust feature vectors. The use of zero-mean Gabor
filers rendered invariant with their FTM, makes this learning
insensitive to intensity shifts, robust to noise and adequate for
image registration. We showed in our experiments on two
types of modalities that in all we have results superior to all
commonly used statistical metrics, and that we even have bet-
ter results than one would have in a common uni-modal set-
ting.

Future work consists in looking into continuous embed-
ding in order to introduce some desired continuity properties
on the metric space. Furthermore, looking into non-linear re-
gression and kernel-based mappings could improve the per-
formance of the method when aiming to fuse images with
non-linearly related appearance variability.
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Fig. 3. Top row: Source Image T1-MRI image. Second Row: tar-
get T2-MRI image. Third Row: deformed image after multi-modal
deformable registration. Bottom Row: left, deformation field of the
registration, right, checker-board image between the target and the
deformed source.

6. REFERENCES

[1] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache,
“Non-parametric diffeomorphic image registration with
the demons algorithm,” LNCS, vol. 4792, pp. 319, 2007.

[2] B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and
N. Paragios, “Dense image registration through mrfs
and efficient linear programming,” MedIA, vol. 12, no.
6, pp. 731–741, 2008.

[3] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal,
and P. Suetens, “Multimodality image registration by
maximization of mutual information,” IEEE-TMI, vol.
16, no. 2, pp. 187–198, 1997.

[4] A. C. S. Chung, W. M. Wells, A. Norbash, and W.E.L.
Grimson, “Multi-modal image registration by minimiz-
ing kullback-leibler distance,” in MICCAI, 2002, pp.
525–532.

[5] Y. He, A.B. Hamza, H. Krim, et al., “A generalized di-
vergence measure for robust image registration,” IEEE-
TSP, vol. 51, no. 5, pp. 1211–1220, 2003.

[6] D. Lee, M. Hofmann, F. Steinke, Y. Altun, N.D. Cahill,
and B. Schlkopf, “Learning the similarity measure for
multi-modal 3d image registration,” in IEEE-CVPR,
2009.

[7] G. Charpiat, M. Hofmann, and B. Schölkopf, “Kernel
methods in medical imaging,” in Handbook of Biomed-
ical Imaging, N. Paragios, J. Duncan, and N. Ayache,
Eds. Springer, Berlin, Germany, 12 2008.

[8] F. Michel and N. Paragios, “Image transport regression
using mixture of experts and discrete Markov Random
Fields,” in IEEE-ISBI, 2010, pp. 1229–1232.

[9] M.M. Bronstein, A.M. Bronstein, F. Michel, and
N. Paragios, “Data fusion through cross-modalitymetric
learning using similarity-sensitive hashing,” in IEEE-
CVPR, 2010, pp. 3594–3601.

[10] G. Shakhnarovich, Learning task-specific similarity,
Ph.D. thesis, MIT, 2005.

[11] Y. Freund and R.E. Schapire, “A decision-theoretic
generalization of on-line learning and an application
to boosting,” in Proc. European Conf. Computational
Learning Theory, 1995.

[12] Y. Ou and C. Davatzikos, “DRAMMS: deformable
registration via attribute matching and mutual-saliency
weighting,” IPMI, 2009.

[13] Y. Zhan and D. Shen, “Automated segmentation of
3D US prostate images using statistical texture-based
matching method,” MICCAI, pp. 688–696, 2003.

[14] BS Manjunath and WY Ma, “Texture features for
browsing and retrieval of image data,” IEEE-PAMI, vol.
18, no. 8, pp. 837–842, 2002.

[15] I. Kokkinos and A. Yuille, “Scale Invariance without
Scale Selection,” in CVPR, 2008.

[16] A. Bernardino and J. Santos-Victor, “Fast IIR isotropic
2-D complex Gabor filters with boundary initialization,”
IEEE-TIP, vol. 15, no. 11, pp. 3338, 2006.

[17] JM Geusebroek, AWM Smeulders, and J. Weijer, “Fast
Anisotropic Gauss Filters,” IEEE-T Im. Proc., vol. 13,
no. 8, pp. 938–943, 2003.

[18] B.T.T. Yeo, T. Vercauteren, P. Fillard, J.M. Peyrat,
X. Pennec, P. Golland, N. Ayache, and O. Clatz, “DT-
REFinD: Diffusion tensor registration with exact finite-
strain differential,” Medical Imaging, IEEE TMI, vol.
28, no. 12, pp. 1914–1928, 2009.

1214


